#32:最长有效括号

该博客探讨了如何使用动态规划解决寻找给定字符串中最长有效括号子串长度的问题。通过示例和详细解释,展示了如何计算以')'结尾的子串长度,并描述了状态转移方程,从而找到最长有效括号子串。
摘要由CSDN通过智能技术生成

给你一个只包含 '(' 和 ')' 的字符串,找出最长有效(格式正确且连续)括号子串的长度。

示例 1:

输入:s = "(()"
输出:2
解释:最长有效括号子串是 "()"
示例 2:

输入:s = ")()())"
输出:4
解释:最长有效括号子串是 "()()"
示例 3:

输入:s = ""
输出:0

方法一:动态规划

        定义[i]dp[i] 表示以下标 ii 字符结尾的最长有效括号的长度。我们将 dp 数组全部初始化为0。显然有效的子串一定以‘)’结尾,因此我们可以知道以‘(’ 结尾的子串对应的dp值必定为0,我们只需要求解‘)’在dp数组中对应位置的值。从前往后遍历字符串求解dp值,我们每两个字符检查一次:s[i]=‘)’ 且 s[i - 1] = \text{‘(’}s[i−1]=‘(’,也就是字符串形如“……()”,我们可以推出:dp[i]=dp[i−2]+2

我们可以进行这样的转移,是因为结束部分的 "()" 是一个有效子字符串,并且将之前有效子字符串的长度增加了 22 。s[i]=‘)’ 且s[i−1]=‘)’,也就是字符串形如“……))”,我们可以推出:
如果s[i−dp[i−1]−1]=‘(’,那么dp[i]=dp[i−1]+dp[i−

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值