给你一个只包含 '(' 和 ')' 的字符串,找出最长有效(格式正确且连续)括号子串的长度。
示例 1:
输入:s = "(()"
输出:2
解释:最长有效括号子串是 "()"
示例 2:
输入:s = ")()())"
输出:4
解释:最长有效括号子串是 "()()"
示例 3:
输入:s = ""
输出:0
方法一:动态规划
定义[i]dp[i] 表示以下标 ii 字符结尾的最长有效括号的长度。我们将 dp 数组全部初始化为0。显然有效的子串一定以‘)’结尾,因此我们可以知道以‘(’ 结尾的子串对应的dp值必定为0,我们只需要求解‘)’在dp数组中对应位置的值。从前往后遍历字符串求解dp值,我们每两个字符检查一次:s[i]=‘)’ 且 s[i - 1] = \text{‘(’}s[i−1]=‘(’,也就是字符串形如“……()”,我们可以推出:dp[i]=dp[i−2]+2
我们可以进行这样的转移,是因为结束部分的 "()" 是一个有效子字符串,并且将之前有效子字符串的长度增加了 22 。s[i]=‘)’ 且s[i−1]=‘)’,也就是字符串形如“……))”,我们可以推出:
如果s[i−dp[i−1]−1]=‘(’,那么dp[i]=dp[i−1]+dp[i−