python3+opencv3实现人脸识别

2 篇文章 0 订阅
1 篇文章 0 订阅

python3+opencv3实现人脸识别:

注释:本编也是菜鸡,心血都在这了。
import cv2 as cv
import numpy as np
import time
import os
import os.path

'导入几个必须的模块,除此之外还另需装"opencv-contrib-python"与"pytesseract"俩个"opencv"的扩展模块.下面的最基本的操作我就不说了,之说明一下与人脸识别有关的函数使用时的注意事项。

以下代码分三个函数, 分别是:
(1)存储图片数据库(拍几张你的照片)
(2)获取所存储的照片(将你/他/她 三人的照片与分别对应的序号(你:0,他:1,她2)赋给俩个列表变量)
(3)对比你之前拍好的照片与现在视频中的脸是不是一个人
注释:我用的虚拟机是ubantuy无法直接打开摄像头哦!
操作:虚拟机(M)(在虚拟机的左上方)-> 可移动设备(D) -> (选择你的摄像头连接)’

def face_data_save_demo():
'''copy的时候此处不知道为啥不能缩进'''
face_cascade = cv.CascadeClassifier("/home/fengkuanwen/下载/opencv/data/haarcascades/haarcascade_frontalface_default.xml")

‘创建人脸识别的一个及联分类器, 文件在opencv官网可以下载’

capture = cv.VideoCapture(0)

‘读取你电脑的第0个摄像头, 即是第一个,编译语言都是从0开始滴’

while True:
    ret, frame = capture.read()
    frame = cv.flip(frame, 1)
    gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.1, 5)

‘尽量是一个灰度图像,1.1表示在前后两次相继的扫描中,搜索窗口的比例系数,默认为1.1即每次搜索窗口依次扩大10%;5表示构成检测目标的相邻矩形的最小个数(默认为3个)。越多检测的精度越高’

    for (x, y, w, h) in faces:
        cv.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 1)
        roi = gray[y: y+h, x: x+w]
        roi = cv.resize(roi, (200, 200))
        
        '''由于对比人脸时需要大小相同的图片,所以就改变以下图片大小'''
        
        cv.imwrite("/home/fengkuanwen/faces/feng_face/NO.%s.pgm"%l, roi)

    cv.imshow("face_data_save_demo", frame)
    l += 1
    time.sleep(0.1)
    if cv.waitKey(20) == 27:
        break

‘第二个函数’

def face_data_catah_demo(path):
x, y =[], []
c = 0

‘把我们之前照片从存储的位置读取出来’

for mainpath, dirnames, filenames in os.walk(path):

'''返回三个参数,第一个是path即咱们传入参数的路径,第二个是该路径下的全部文件夹名称(不包括子文件夹), 第三个参数是该路径下的全部文件名(不包括子文件)'''

    for dirname in dirnames:
		
       	dirpath = os.path.join(mainpath, dirname)
       	
		'''dirpath就是每个文件夹的路路径:os.path.join("D:/", "美女.jpg")就为"D:/美女.jpg"'''
		
    		for face_name in os.listdir(dirpath):
    		
        '''os.listdir(path)就是该路径下的全部文件名称,在这里就是全部照片名称'''
            face_path = os.path.join(dirpath, face_name)
            '''对比之前就是每张照片的路径'''
            
            img = cv.imread(face_path, cv.IMREAD_GRAYSCALE)
            img = np.asarray(img, np.uint8)
            
            '''需要改一下照片的字节类型'''
            
            x.append(img)
            y.append(c)
            
			'''每一个c就是每一张照片的标签,相同人的照片的标签应该相同,就是feng文件夹里面所有的feng**的照片的标签都为0'''
			
        c += 1
return x, y

‘第三个函数’

def face_recoglize(path):
x, y = face_data_catah_demo(path)
y = np.asarray(y, np.int32)

names = ["feng", "zhang"]

‘名称列表,此处注意名称所在的位置 应该与每张照片对应的标签相同,一会既可以索引出来’

model = cv.face_EigenFaceRecognizer.create()

'创建人脸识别器的模型,模型本身就是一个算法,还有俩个模型算法比较常用,分别是 "fisherfaces "与 “LBPH” ’

model.train(np.asarray(x), np.asarray(y))

‘对模型进行训练,训练的内容就是,每一张照片与其所对应的标签.’

face_cascade = cv.CascadeClassifier("/home/fengkuanwen/下载/opencv/data/haarcascades/haarcascade_frontalface_default.xml")
capture = cv.VideoCapture(0)
while True:
    ret, frame = capture.read()
    frame = cv.flip(frame, 1)
    gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.2, 5)
    for (x, y, w, h) in faces:
        cv.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 1)
        roi = gray[y: y+h, x:x+w]
        try:
        ''''由于可能会比较失败,所以用try'''
            roi = cv.resize(roi, (200, 200), interpolation=cv.INTER_LINEAR)

‘之前说过要比较的人脸此寸应该相同,所以这里修改以下区域大小.’

            params = model.predict(roi)

‘将之前训练过的模型与现在的人脸区域进行比较,若比较成功,即会返回成功照片对应的标签’

            cv.putText(frame, names[params[0]], (x, y-20), cv.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 1)

‘在要现实的图像上显现出文字,在这里parama[0]代表比较成功的结果,其值可以是0,1,2中的任意一个’

        except:
            continue
            
        cv.imshow("face_recoglize", frame)
        if cv.waitKey(20) == 27:
            break
          cv.destroyAllWindows()
参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

冯邵封

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值