滑动窗口的支持向量机(SVM)

(1):滑动窗口:
滑动窗口顾名思义:用一个一直滑动的窗口(要比图像小),去检查图像。
举例:在人脸识别中,有detectmultiscale()函数,第一个参数是图像,第二个便是滑动窗口的滑动比例:列入1.1就代表滑动从左到右滑动了%110个的单位。
非最大值抑制:
举例:假如图像中有一张人脸,那么你想:当这个会滑动的窗口从左到右一点点的经过人脸的时候,不就会得到一系列有同一张人脸的窗口吗(每次人脸在窗口的位置不同),那么将如何得到人脸在中心的那张图片呢?这时我们就要用到菲最大值抑制了,我们给这一系列具有相同人脸的窗口都定义同一个“评分”标准(具体评分标准我也不清楚,这篇文章就大概讲述一个几个专业术语的大意),其中对评分不是最大值的窗口进行抑制,那么评分为最大值(最完美的具有人脸的窗口)的那张图片便保留了下来。

(2):支持向量机(SVM):
支持向量机其实就是一种算法,它将图像的各个特征用向量的形式保存起来,并可以用超平面把图像的不同特征进行分割(注释1:超平面),实现这个作用有很多算法,这里我们只解释它的具体大意。

注释1:超平面:假如有一个篮球和一个排球并排正对的图像(二维空间),那么就会用一个二维平面(直线)把篮球与排球进行分割。那么在三维空间中呢?
就会用一个三维平面(即是平面)把其分割,在大于三维的呢?我们便同意统称为超平面。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值