欧拉函数小记

欧拉函数小记

定义:对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目(φ(1)=1)。

**几个性质:

  1. phi(prime) = prime - 1.
  2. phi函数是一个积性函数,当a与b互素时,满足phi(a×b)=phi(a)×phi(b).
  3. 若a为质数,b mod a=0,phi[a*b]=phi[b]*a.
  4. n = ∑ d|n phi(d) (n 的所以因子d 的 phi(d)之和是 )
    前三个性质主要用来线性求欧拉筛,第4个性质用来推导公式化简。
  5. 若正整数a,n互质,则满足a ^ x ≡ 1 (mod n)的最小正整数x0 是phi(n)的约数

先放筛法模板

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 10;
bool isprime[maxn];
int prime[maxn],phi[maxn],countp;
void init(){
    memset(isprime,1,sizeof(isprime));
    isprime[0] = isprime[1] = 0;
    countp = 0;
    phi[1] = 1;
    for(int i = 2; i < maxn; ++i){
        if(isprime[i]){
            prime[++countp] = i;
            phi[i] = i - 1;
        }
        for(int j = 1; j <= countp && i * prime[j] < maxn; ++j){
            isprime[i*prime[j]] = 0;
            if(!(i % prime[j])){
                phi[i*prime[j]] = phi[i] * prime[j];
                break ;
            }
            phi[i*prime[j]] = phi[i] * (prime[j] - 1);
        }
    }
}

//求单个数的欧拉函数O(sqrt(n))
ll getphi(ll n){
    ll ans = n;
    for(ll i = 2; i * i<= n; ++i){
        if(!(n%i)){
            ans = ans / i * (i - 1);
            while(!(n%i)) n /= i;
        }
    }
    if(n > 1) ans = ans / n * (n - 1);
    return ans;
}

来到例题,关于性质4的
膜一下会带来好运
在这里插入图片描述

思路:
根据性质4:
首先有 n = ∑ d|n phi(d)
所以 在这里插入图片描述

AC code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7;
bool ispirme[250];
int prime[250],phi[250],countp;
void init(){
    memset(ispirme,1,sizeof(ispirme));
    ispirme[0] = ispirme[1] = 0;
    countp = 0;
    phi[1] = 1;
    for(int i = 2; i <= 240; ++i){
        if(ispirme[i]){
            prime[++countp] = i;
            phi[i] = i - 1;
        }
        for(int j = 1; j <= countp && i * prime[j] <= 240; ++j){
            ispirme[i*prime[j]] = 0;
            if(!(i % prime[j])){
                phi[i*prime[j]] = phi[i] * prime[j];
                break ;
            }
            phi[i*prime[j]] = phi[i] * (prime[j] - 1);
        }
    }
}

ll getphi(ll n){
    ll ans = n;
    for(ll i = 2; i * i<= n; ++i){
        if(!(n%i)){
            ans = ans / i * (i - 1);
            while(!(n%i)) n /= i;
        }
    }
    if(n > 1) ans = ans / n * (n - 1);
    return ans;
}

int main(){
    init();
    int T,n;
    scanf("%d",&T);
    while(T--){
        scanf("%d",&n);
        int ans = (ll)n * (n + 1) / 2 % mod;
        for(int i = 1; i < 233; ++i){
            ans = (ans - (ll)phi[i] * (n / i) % mod + mod) % mod;
        }
        for(int i = n; i > (n - 233); --i){
            ans = (ans - getphi(i) * (n / i) % mod + mod) % mod;
        }
        printf("%d\n",ans%mod);
    }
    return 0;
}

再来一道升级版本
模两下会送命
在这里插入图片描述
思路:公式同上,主要在后k项的处理,后k项注意1e6范围内,可用区间筛,套用同上。详见代码。

code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 5;
const ll mod = 998244353;
ll phi[maxn], segmentphi[maxn], t[maxn];
ll fast_pow(ll a, ll b){
    ll res = 1;
    while(b){
        if(b&1) res = res * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return res;
}

void solve(ll n,ll k){
    memset(phi,0,sizeof(phi));
    phi[0] = phi[1] = 1;
    ll st = n - k;
    for(int i = 0; i <= k ; ++ i)  segmentphi[i] = t[i] = st + i;
    for(int i = 2; i < maxn; ++i){
        if(!phi[i]){
            for(int j = i; j < maxn; j += i){
                if(!phi[j]) phi[j] = j;
                phi[j] = phi[j] / i * (i - 1);
            }
            for(ll j = st / i * i + i; j <= n; j += i){
                ll l = j - st;
                segmentphi[l] = segmentphi[l] / i * (i - 1);
                while(!(t[l] % i)) t[l] /= i;
            }
        }
    }
    for(int i = 1; i <= k; ++i){
        if(t[i] > 1) segmentphi[i] = segmentphi[i] / t[i] * (t[i] - 1);
    }
    ll ans = (n % mod) * ((n + 1) % mod) % mod * fast_pow(2,mod - 2) % mod;
    ll sum1 = 0, sum2 = 0;
    for(int i = 1; i < k; ++i){
        sum1 = (sum1 + phi[i] * (n / i) % mod) % mod;
    }
    ans = (ans - sum1 + mod) % mod;
    for(ll i = st + 1; i <= n; ++i){
        sum2 = (sum2 + ((segmentphi[i-st] % mod) * ((n / i) % mod) % mod)) % mod;
    }
    ans = (ans - sum2 + mod) % mod;
    cout<<ans<<endl;
}

int main(){
    ll n,k;
    while(cin>>n>>k){
        solve(n,k);
    }
    return 0;
}

关于性质5:
POJ 3696
题意:给定一个正整数L,L<=2*10^9, 问至少需要几个8连在一起组成的正整数是L的倍数。例如:L = 8, x = 1, L = 11, x = 2 组成数组88, L = 16, x = 0 (不存在)。
思路: x 个 8连在一起的正整数可以写作 8 * (10 ^ x - 1) / 9 等比数列求和,题目要求最小的x,即满足 L | 8 * (10 ^ x - 1) / 9. 假设d = gcd(L,8)
则 L | 8 * (10 ^ x - 1) / 9. 转化为 9L | 8 * (10 ^ x - 1) 把8移到左边, 9L / d | (10 ^ x - 1) ,最后有 10 ^x ≡ 1 (mod 9L / d). 由性质5可以求出可知枚举phi(9L / d)利用快速幂即可,注意精度,加一个快速乘。

code:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
ll mul(ll a, ll b, ll mod){
    ll res = 0;
    while(b){
        if(b & 1) res = (res + a) % mod;
        a = (a << 1) % mod;
        b >>= 1;
    }
    return res;
}
ll fast_pow(ll a,ll b,ll mod){
    ll res = 1;
    while(b){
        if(b&1) res = mul(res,a,mod);
        a = mul(a,a,mod);
        b >>= 1;
    }
    return res;
}
ll getphi(ll n){
    ll ans = n;
    for(ll i = 2; i * i <= n ; ++i){
        if(!(n%i)){
            ans = ans / i * (i - 1);
            while(!(n % i)) n /= i;
        }
    }
    if(n > 1) ans = ans / n * (n - 1);
    return ans;
}

ll gcd(ll a, ll b){
    return (b == 0) ? a :gcd(b, a % b);
}

int main(){
    int kase = 0;
    ll L;
    while(~scanf("%lld",&L)){
        if(L==0) break ;
        ll mod = L / gcd(L,8LL) * 9;
        ll phi = getphi(mod);
        ll ans = 0;
        ll up = sqrt(phi*1.0);
        bool ok = false;
        for(int i = 1; i <= up; ++i){
            if(phi % i == 0 && fast_pow(10,i,mod) == 1){
                ans = i, ok = true;
                break;
            }
        }
        if(!ok){
            for(int i = up; i >= 2; --i){
                if(phi % i == 0 && fast_pow(10,phi / i,mod) == 1){
                    ans = phi / i;
                    break;
                }
            }
        }
        printf("Case %d: %lld\n",++kase,ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值