矩阵快速幂小记

矩阵快速幂

在这里插入图片描述
在这里插入图片描述

矩阵模板:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod = 1e9 + 7;
const int NUM = 7; // 最大存储空间
int N; //实际进行运算的方阵的维度N
struct mat{
    int a[NUM][NUM];
    void clear(){
        memset(a,0,sizeof(a));
    }
    void init(){ //初始化成单位方阵
        memset(a,0,sizeof(a));
        for(int i = 0; i < N; ++i) a[i][i] = 1;
    }
    void show() const{ //输出矩阵
        for(int i = 0; i < N; ++i){
            for(int j = 0; j < N; ++j){
                printf("%d%c",a[i][j],(j == N - 1) ? '\n' : ' ');
            }
        }
    }
    mat operator * (const mat &b) const{
        mat c;
        for(int i = 0; i < N; ++i){
            for(int j = 0; j < N; ++j){
                c.a[i][j] = 0;
                for(int k = 0; k < N; ++k){
                    c.a[i][j] = (c.a[i][j] + 1LL * a[i][k] * b.a[k][j] % mod) % mod; //注意中间过程精度
                }
            }
        }
        return c;
    }
    mat operator + (const mat &b) const{
        mat c;
        for(int i = 0; i < N; ++i){
            for(int j = 0;j < N; ++j){
                c.a[i][j] = ((ll)a[i][j] + b.a[i][j]) % mod;
            }
        }
        return c;
    }
};

mat fast_pow(mat a,ll b){ //求矩阵a ^ n幂次方之和,注意幂次,int 还是 long long
    mat res;
    res.init();
    while(b > 0){
        if(b & 1) res = res * a;
        a = a * a;
        b >>= 1;
    }
    return res;
}

mat pow_sum(mat a,ll n){ //(a+a^2+a^3....+a^n)%mod 矩阵的幂和,也需要注意幂次,int or long long
    if(n == 1) return a;
    ll mid = n >> 1;
    mat pre = pow_sum(a,mid);
    mat ans = pre + pre * fast_pow(a,mid);
    if(n & 1)
    ans = ans + fast_pow(a,mid);
    return ans;
}

int det(mat a){ // 求方阵的行列式
    int ans = 1,sign = 0;
    for(int i = 0; i < N; ++i){
        for(int j = i + 1; j < N; ++j){
            int x = i, y = j;
            while(a.a[y][i]){
                int t = a.a[x][i] / a.a[y][i];
                for(int k = i; k < N; ++k){
                    a.a[x][k] = (a.a[x][k] - a.a[y][k] * t) % mod;
                }
                swap(x,y);
            }
            if(x != i){
                for(int k = 0; k < N; ++k){
                    swap(a.a[x][k],a.a[i][k]);
                }
                sign ^= 1;
            }
        }
        if(a.a[i][i] == 0){
            ans = 0; 
            return ans;
        }else{
            ans = ans * a.a[i][i] % mod;
        }
    }
    if(sign) ans *= -1;
    if(ans < 0) ans = (ans % mod + mod) % mod;
    return ans;
}

int main(){
    mat a;
    int n;
    while(cin >> n){
        N = n;
        for(int i = 0; i < n; ++i){
            for(int j = 0; j < n; ++j){
                cin >> a.a[i][j];
            }
        }
        a.show();
        cout << det(a) << endl;
        mat tmp  = fast_pow(a, 2);
        tmp.show();
        mat b = pow_sum(a,2);
        b.show();
    }
    return 0;
}

矩阵快速幂主要用于递推:
在这里插入图片描述

第一步推出递推关系很重要,然后是构建变换矩阵:
先举个简单栗子:
在这里插入图片描述

在这里插入图片描述
再说下经典的例题:

POJ 3070 斐波那契数列的后四位

cdoe:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int mod = 10000;
const int NUM = 2;
int N = 2;
struct mat{
    int a[NUM][NUM];
    void clear(){
        memset(a,0,sizeof(a));
    }
    void init(){
        memset(a,0,sizeof(a));
        for(int i = 0; i < N; ++i) a[i][i] = 1;
    }
    void show() const{
        for(int i = 0; i < N; ++i){
            for(int j = 0; j < N; ++j){
                printf("%d%c",a[i][j],(j == N - 1) ? '\n' : ' ');
            }
        }
    }
    mat operator * (const mat &b) const{
        mat c;
        for(int i = 0; i < N; ++i){
            for(int j = 0; j < N; ++j){
                c.a[i][j] = 0;
                for(int k = 0; k < N; ++k){
                    c.a[i][j] = (c.a[i][j] + 1LL * a[i][k] * b.a[k][j] % mod) % mod; //注意中间过程精度
                }
            }
        }
        return c;
    }
    mat operator + (const mat &b) const{
        mat c;
        for(int i = 0; i < N; ++i){
            for(int j = 0;j < N; ++j){
                c.a[i][j] = ((ll)a[i][j] + b.a[i][j]) % mod;
            }
        }
        return c;
    }
};

mat fast_pow(mat a,ll b){
    mat res;
    res.init();
    while(b > 0){
        if(b & 1) res = res * a;
        a = a * a;
        b >>= 1;
    }
    return res;
}

mat pow_sum(mat a,ll n){
    if(n == 1) return a;
    ll mid = n >> 1;
    mat pre = pow_sum(a,mid);
    mat ans = pre + pre * fast_pow(a,mid);
    if(n & 1)
    ans = ans + fast_pow(a,mid);
    return ans;
}

int det(mat a){
    int ans = 1,sign = 0;
    for(int i = 0; i < N; ++i){
        for(int j = i + 1; j < N; ++j){
            int x = i, y = j;
            while(a.a[y][i]){
                int t = a.a[x][i] / a.a[y][i];
                for(int k = i; k < N; ++k){
                    a.a[x][k] = (a.a[x][k] - a.a[y][k] * t) % mod;
                }
                swap(x,y);
            }
            if(x != i){
                for(int k = 0; k < N; ++k){
                    swap(a.a[x][k],a.a[i][k]);
                }
                sign ^= 1;
            }
        }
        if(a.a[i][i] == 0){
            ans = 0;
            return ans;
        }else{
            ans = ans * a.a[i][i] % mod;
        }
    }
    if(sign) ans *= -1;
    if(ans < 0) ans = (ans % mod + mod) % mod;
    return ans;
}

int main(){
    mat a;
    a.a[0][0] = 1, a.a[0][1] = 1;
    a.a[1][0] = 1, a.a[1][1] = 0;
    ll n;
    int f[]={0,1,1,2,3};
    while(cin >> n){
        if(n == -1) break ;
        if(n <= 2){
            cout << f[n] << endl;
            continue ;
        }
        mat F;
        F = fast_pow(a,n - 2);
        printf("%d\n",(F.a[0][0] + F.a[0][1]) % mod);
    }
    return 0;
}

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

举例说:
在这里插入图片描述
n ^ k = (n - 1 + 1) ^ k二项式展开获得系数Cm n;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

举两道例题:
数列计算
问题描述
Cai 给了如下递归定义的序列:
Fn = 3Fn-1 +2 Fn-2 +n * 3 ^n,(n>1),F1=2, F0 =1
他要求你对给定一个整数n,求Fn 是多少?
输入
多组数据,每组一行,其上有一个整数n(0<n<=10000000000000)。
输出
每组输出一行,输出Fn (mod 100000007)
输入样例
3
1000
输出样例
55
93320452
思路:
在这里插入图片描述
最后注意:n加多1,因为板子里面A ^ 0 是返回的是单位矩阵,但推式子的时候认为我们认为 A ^ 0 = A,所以要多加一次幂。
AC code:

#include<bits/stdc++.h>
using namespace std;
const int NUM = 4;
const int mod = 100000007;
typedef long long ll;
int N = 4;
struct mat{
    int a[NUM][NUM];
    void clear(){
        memset(a,0,sizeof(a));
    }
    void init(){
        memset(a,0,sizeof(a));
        for(int i = 0; i < N; ++i) a[i][i] = 1;
    }
    void show(){
        for(int i = 0; i < N; ++i){
            for(int j = 0; j < N; ++j){
                printf("%d%c",a[i][j], (j == N - 1) ? '\n' : ' ');
            }
        }
    }
    mat operator * (const mat &b) const{
        mat c;
        for(int i = 0; i < N; ++i){
            for(int j = 0; j < N; ++j){
                c.a[i][j] = 0;
                for(int k = 0; k < N; ++k){
                    c.a[i][j] = (c.a[i][j] + 1LL * a[i][k] * b.a[k][j] % mod) % mod;
                }
            }
        }
        return c;
    }
};

mat fast_pow(mat a,ll b){
    mat res;
    res.init();
    while(b > 0){
        if(b & 1) res = res * a;
        a = a * a;
        b >>= 1;
    }
    return res;
}

int main(){
    mat A;
    A.clear();
    A.a[0][0] = 3, A.a[0][1] = 2, A.a[0][2] = 3, A.a[0][3] = 3;
    A.a[1][0] = 1;
    A.a[2][2] = 3, A.a[2][3] = 3;
    A.a[3][3] = 3;
    ll n;
    while(cin >> n){
        if(n == 0){
            cout << 1 <<endl;
            continue ;
        }
        if(n == 1){
            cout << 2 <<endl;
            continue ;
        }
        n += 1; //注意加多1,因为板子里面A^0是单位矩阵,但推式子的时候认为A^0=A,所以要多加一次幂
        mat F;
        F = fast_pow(A,n - 2);
        int ans = 0;
        ans = (ans + F.a[0][0] * 2LL) % mod;
        ans = (ans + F.a[0][1] * 1LL) % mod;
        ans = (ans + F.a[0][2] * 3LL) % mod;
        ans = (ans + F.a[0][3] * 3LL) % mod;
        cout << ans << endl;
    }
    return 0;
}

[HDU5950 Recursive sequence]
题意:
求 f(n) = f(n−1) + 2 f∗(n−2) + n^4,其中 f(1) = a, f(2) = b;
思路:
情形3情况,还是套路题。

AC code:

#include<bits/stdc++.h>
using namespace std;
const int NUM = 8;
const long long mod = 2147493647;
typedef long long ll;
int N = 7;
struct mat{
    ll a[NUM][NUM];
    void init(){
        memset(a,0,sizeof(a));
        for(int i = 0; i < N; ++i) a[i][i] = 1;
    }
    mat operator * (const mat &b) const{
        mat c;
        for(int i = 0; i < N; ++i){
            for(int j = 0; j < N; ++j){
                c.a[i][j] = 0;
                for(int k = 0; k < N; ++k){
                    c.a[i][j] = (c.a[i][j] + a[i][k] * b.a[k][j] % mod) % mod;
                }
            }
        }
        return c;
    }
};

mat fast_pow(mat a,ll b){
    mat res;
    res.init();
    while(b > 0){
        if(b & 1) res = res * a;
        a = a * a;
        b >>= 1;
    }
    return res;
}

int main(){
    mat ma;
    memset(ma.a,0,sizeof(ma.a));
    ma.a[0][0] = 1, ma.a[0][1] = 2, ma.a[0][2] = 1,ma.a[0][3] = 4,ma.a[0][4] = 6;
    ma.a[0][5] = 4, ma.a[0][6] = 1;
    ma.a[1][0] = 1;
    ma.a[2][2] = 1, ma.a[2][3] = 4, ma.a[2][4] = 6, ma.a[2][5] = 4, ma.a[2][6] = 1;
    ma.a[3][3] = 1, ma.a[3][4] = 3, ma.a[3][5] = 3, ma.a[3][6] = 1;
    ma.a[4][4] = 1, ma.a[4][5] = 2, ma.a[4][6] = 1;
    ma.a[5][5] = 1, ma.a[5][6] = 1;
    ma.a[6][6] = 1;
    int T;
    ll n,a,b;
    cin >> T;
    while(T--){
        cin >> n >> a >> b;
        if(n == 1){
            cout << a % mod << endl;
            continue ;
        }
        if(n == 2){
            cout << b % mod << endl;
            continue ;
        }
        mat tmp;
        tmp = fast_pow(ma,n - 2);
        ll ans = 0;
        ans = (ans + tmp.a[0][0] * b) % mod;
        ans = (ans + tmp.a[0][1] * a) % mod;
        ans = (ans + tmp.a[0][2] * 16) % mod;
        ans = (ans + tmp.a[0][3] * 8) % mod;
        ans = (ans + tmp.a[0][4] * 4) % mod;
        ans = (ans + tmp.a[0][5] * 2) % mod;
        ans = (ans + tmp.a[0][6]) % mod;
        cout << ans << endl;
     }
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值