互联网的数字化特征为数据的搜集、整理、分析等带来了巨大的突破,越来越多的企业意识到数据信息已经逐渐成为企业发展的智力资源,如今IT、金融、咨询等诸多行业都在不断探索数据的智能化分析方法。与传统的数据分析不同的是,新时代的数据分析师所面临的问题不再是数据匮乏,而是数据的爆炸性增长。如何利用高效的数据分析工具进行探索,发现数据信息的时间价值,成为当前数据分析的首要任务。
想要成为一位数据分析师,不仅需要掌握数据分析的方法和工具,更需要业务理解能力和商业敏感性,从数据中挖掘有用信息,仅仅靠几个月的学习是不可能的。所以我为自己接下来的学习做了一个大概的规划,希望能够利用科研的空余时间学习一下数据分析的相关知识,力争将来成为一名优秀的数据分析师。
规划很简略,亦有很多不足之处,学习的过程中会不断补充。
-
编程基础
- python
- 数据结构
- 数据库、SQL
- Hadoop等框架 理论基础
- 统计学
- 机器学习 业务能力
- 数据分析模型与方法
- Excel
- 经济学、金融等知识 项目篇
- 数据可视化