Boosting Few-Shot Visual Learning with Self-Supervision 阅读笔记

        小样本学习和自监督学习解决了同一个问题的不同方面:如何在很少或没有标记数据的情况下训练模型。在这项工作中,我们利用这两个领域的互补性,并提出了一种通过自我监督来提高小样本学习的方法。

介绍:

       小样本学习依赖迁移学习的方式。有两个阶段。在第一阶段,通常使用一组不同的类(称为基类)来训练模型,基类与大量带注释的训练示例相关联。这一阶段的目标是让少镜头模型获得可转移的视觉分析能力,通常以学习表示的形式,在第二阶段中被动员起来。在接下来的步骤中,模型确实学会了识别在第一个学习阶段看不到的新类,每个类只使用几个训练示例。受到少镜头学习和自监督学习之间联系的启发,我们提出将这两种方法结合起来,以提高少镜头模型的迁移学习能力。

方法

       两个数据集,一个是Db,基类训练集。另一个是Dn满足N-way K-shot模式。小样本算法的主要组成部分是特征提取器F。输入一张图像X,输出d维特征F(x)。对于原型网络和余弦分类器,余弦分类器在学习特征提取器的同时学习实际的基分类器,而原型网络仅仅依赖于类级平均。

原型网络:

选取N个类每个类k个样本称之为supportset。使用特征提取器F,计算每个类的平均特征(中心)。然后构建一个分类器,输入Query img,输出其属于supportset的分数。其中sim(·,·)为相似度函数,可以是余弦相似度,也可以是负平方欧氏距离。训练阶段使用BCELOSS计算损失,反向传播。

在第二学习阶段,冻结特征提取器Fθ,将新类的分类器简单定义为C(·;Dn),其原型定义为(1)中D∗= Dn。

余弦分类器:

Fθ和基于余弦相似度的分类器。表示Wb = [w1,…, wNb]为d维分类权重向量的矩阵,为输入图像的归一化分数

自监督促进小样本学习:

       扩展第一阶段的任务,除了识别基类的主要任务还使用了自监督的辅助任务。我们考虑了两种将自我监督纳入少镜头学习算法的方法:(1)通过使用基于自我监督任务的辅助损失函数,以及(2)在训练过程中以半监督的方式利用未标记数据。

自监督辅助损失:

训练中加入自监督模块,损失为Lfew+Lself。

对于自监督损失,两个任务:预测由图像[14]引起的旋转,从同一幅图像[6]中预测两个补丁的相对位置

图像旋转:将图像旋转0,90,180,270输入特征提取器F,构建一个新的分类器,预测图像旋转了多少度。

相对补丁位置:将图像划分为九个块,计算8个区域相对于正中间的位置。

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值