辗转相除法

我们经常会碰到取两数最大公约数的情况,通常情况下我们一般都会采用从较小值开始,逐渐递减并检验的方法,直到找到可以同时整除两个数的值,从而找到最大公约数,其算法实现为

int temp = min_num;
while(true)
{
	if(min_num % temp == 0 && max_num % temp == 0)
	{
		break;
	}
	temp--;
}
//temp即为最大公约数

暴力但是简洁的方法
但其实我们还有更具有美感的方法,从数学的角度去解决这个问题
这就是欧几里得算法,也叫辗转相除法。
他的定理内容为


两个整数的最大公约数等于其中较小的那个数和两数相除余数的最大公约数


我们来用代码写一下

//依旧是min_num和max_num两个数
int findGcd(int min,int max)//求最大公约数
{
	if(min == 0)//找到公约数时返回,即上一步结束后两数取余为0时返回
	{
		return max;//此时的上一步中的较小数就是最大公约数
	}
	else
	{
		return findGcd(max % min,min);//较小的数和两数取余的公约数
	}
}

可以看到这个方法是递归的进行计算,但是因为其摒弃了递减的暴力方法,所以在某些极端情况下大大节省了运行时间,但相对应的,也增加了内存的消耗,毕竟🐟和熊掌不可兼得

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值