整数划分问题引入
正整数可以表示成多个正整数之和,那么一个正整数可以有多少种正整数组合合成呢?列如正整数6可以有11种不同组合,那么对于任意一个正整数如何求得他有多少种组合划分。
逻辑思考
- 首先设函数 p(n)=n1+n2+n3…,p(n)表示正整数n的划分个数
- 其次设加数(n1,n2…)前一个不小于后一个,第一个加数值最大。
- 看上图按最大加数划分为六组,因此在函数中再加一个参数m,表示最大加数,此时函数为p(n,m)。
经过上面三个步骤得到了函数p(n,m),n表示和,m表示最大加数。自此已经可以把函数p(n,m)根据n,m之间的大小关系分成四个小方向。
- n=m=1,当最大加数上限和和都为1时--------p(1,1)=1;
- n<m,当最大加数大于和时,因为加数不可能大于和,因此将最大加数赋值为n--------p(n,m)=p(n,n);
- n>m,当和大于最大加数上限时---------p(n,m)=p(n,m-1)+p(n-m1,m);
- n=m,当和等于最大加数时---------p(n,m)=1+p(n,n-1);
递归解决
public class Demo3 {
public static void main(String[] args) {
start(6);
}
public static void start(int n) {
int m = n;
int num = run(n,m);
System.out.println(num);
}
public static int run(int n,int m) {
if(n==1 && m==1) {
return 1;
}else if(m != 0){
if(n<m) {
return run(n,n);
}
if(n>m) {
return run(n,m-1)+run(n-m,m);
}
return 1+run(n,n-1);
}else {
return 0;
}
}
}