递归的核心是找到
1.边界条件 边界条件是递归函数的出口
2.递归方程
以斐波拉切数列为例
边界条件是 f(0)=0 f(1)=1
递归方程是 f(n)=f(n-1)+f(n-2)
整数划分问题的难点在于怎么找出递归方程?
构造函数q(n,m) n代表目标数 m代表最大划分数
根据n和m的关系,考虑以下几种情况:
(1)当n=1时,不论m的值为多少(m>0),只有一种划分即{1};
(2)当m=1时,不论n的值为多少,只有一种划分即n个1,{1,1,1,...,1};
(3)当n=m时,根据划分中是否包含n,可以分为两种情况:
(a)划分中包含n的情况,只有一个即{n};
(b)划分中不包含n的情况,这时划分中最大的数字也一定比n小,即n的所有(n-1)划分。 因此 q(n,n) =1 + q(n,n-1);
(4)当n<m时,由于划分中不可能出现负数,因此就相当于q(n,n);
(5)但n>m时,根据划分中是否包含最大值m,可以分为两种情况:
(a)划分中包含m的情况,即{m, {x1,x2,...xi}}, 其中{x1,x2,... xi} 的和为n-m,因此这情况下为q(n-m,m)
(b)划分中不包含m的情况,则划分中所有值都比m小,即n的(m-1)划分,个数为q(n,m-1);
因此 q(n, m) = q(n-m, m)+q(n,m-1);
综上所述:
q(n, m) = 1; (n=1 or m=1)
q(n,m) = q(n, n); (n<m)
1+ q(n, m-1); (n=m)
q(n-m,m)+q(n,m-1); (n>m)
public class Solution {
public static void main(String[] args) {
Solution test=new Solution();
System.out.println(test.geNum(8));
}
public int geNum(int n)
{
return get(n,n);
}
public int get(int n,int m)
{
if(n==1||m==1)
return 1;
if(n<m)
return get(n,n);
if(n==m)
return 1+get(n,m-1);
else return get(n-m,m)+get(n,m-1);
}
}
整数划分问题的引申:
纸币组合问题
给定一个数组{5,10,25,1}四种纸币 问有多少种组合成1000元的可能
public class Solution {
public static void main(String[] args) {
Solution test=new Solution();
int[] arr=new int[]{5,10,25,1};
System.out.println(test.count(25,arr));
}
public int count(int n,int[] arr)
{
if(n<0||arr==null)
return 0;
else
return getsize(n, 0, arr);
}
public int getsize(int n,int index,int[] arr)
{
int size=0;//标志位 计数位
if(index==arr.length)//递归的出口
{
size=(n==0?1:0);
}
else
{
for(int i=0;i*arr[index]<=n;i++)//for循环每种钱币的个数
{
size=size+getsize(n-i*arr[index], index+1, arr);//递归调用
}
}
return size;
}
}