下载cuda
下载torch
下载与python版本适配的GPU版torch
使用GPU加速
将模型,函数,数据都放入GPU中
- 将模型加入GPU
# 自定义模型要继承torch.nn.Module才能使用GPU加速 # 在模型后加cuda函数 model = TransE(num_nodes, num_relations, hidden_channels).cuda()
- 将函数放入GPU,例外:模型model的__init__函数中出现的self调用的函数,数据将自动放入GPU(模型已被放入GPU)
# 例如将loss函数放入GPU l = train_model.loss(head_index.cuda(), relation_type.cuda(), tail_index.cuda()).cuda()
- 将数据放入GPU
# 基本将tensor类型的数据都放入GPU head_index.cuda()