torch使用GPU加速

文章介绍了如何下载CUDA和torch库,以及如何确保torch与Python版本匹配以使用GPU加速。内容包括将模型、函数和数据迁移到GPU上,如自定义模型需继承torch.nn.Module,模型和数据的cuda()函数调用,以及GPU上loss函数的计算。
摘要由CSDN通过智能技术生成
下载cuda
下载torch

下载与python版本适配的GPU版torch

使用GPU加速

将模型,函数,数据都放入GPU中

  • 将模型加入GPU
    # 自定义模型要继承torch.nn.Module才能使用GPU加速
    # 在模型后加cuda函数
    model = TransE(num_nodes, num_relations, hidden_channels).cuda()
    
  • 将函数放入GPU,例外:模型model的__init__函数中出现的self调用的函数,数据将自动放入GPU(模型已被放入GPU)
    # 例如将loss函数放入GPU
    l = train_model.loss(head_index.cuda(), relation_type.cuda(), tail_index.cuda()).cuda()
    
  • 将数据放入GPU
    # 基本将tensor类型的数据都放入GPU
    head_index.cuda()
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值