pytorch采用GPU加速方法

在进行深度学习训练模型时,对于计算量小一些的模型,是可以在CPU上进行的。但是当计算量比较大时,我们希望利用GPU并行计算的能力去加快训练的速度。

查看GPU版本号

import torch

print(torch.__version__)  # 查看torch当前版本号

print(torch.version.cuda)  # 编译当前版本的torch使用的cuda版本号

print(torch.cuda.is_available())  # 查看当前cuda是否可用于当前版本的Torch,如果输出True,则表示可用

查看GPU数量

def try_gpu(i=0): 
    """如果存在,则返回gpu(i),否则返回cpu()"""
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')

def try_all_gpus(): 
    """返回所有可用的GPU,如果没有GPU,则返回[cpu(),]"""
    devices = [torch.device(f'cuda:{i}')
             for i in range(torch.cuda.device_count())]
    return devices if devices else [torch.device('cpu')]
# 0号GPU是否存在,10号GPU是否存在
try_gpu(), try_gpu(10), try_all_gpus()


指定GPU

import torch
from torch import nn

torch.device('gpu'), torch.cuda.device('cuda'), torch.cuda.device('cuda:1')

GPU计算张量

# 创建一个张量Y在1号GPU
Y = torch.rand(2, 3, device=try_gpu(1))
Z = X.cuda(1)  # 将X的内容复制在1号GPU的Z
print(X)
print(Z)
tensor([[1., 1., 1.],
        [1., 1., 1.]], device='cuda:0')
tensor([[1., 1., 1.],
        [1., 1., 1.]], device='cuda:1')

指定GPU计算神经网络模型

from torch import nn

net = nn.Linear(3, 1)
print(list(net.parameters())[0].device) # cpu

net.cuda(0)
print(list(net.parameters())[0].device) # cuda:0

net2 = nn.Linear(3, 1, device = torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
print(list(net2.parameters())[0].device) # cuda:0

net3 = nn.Linear(3, 1).to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
print(list(net3.parameters())[0].device) # cuda:0

net3 = net3.cpu()
print(list(net3.parameters())[0].device) # cpu

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Pytorch是一种基于Python语言的开源深度学习框架,其提供了强大的GPU计算能力。在Pytorch中,使用GPU加速可以显著地提高模型的训练速度和效率,尤其是在处理大规模数据集和深层网络时。 然而,当使用Pytorch进行大规模的深度学习训练时,可能会出现GPU内存超出的问题。这是因为深度学习网络通常需要处理大量的数据和参数,需要更多的内存空间来存储中间结果和计算缓存。如果GPU内存不足,就会导致程序崩溃或者无法正常运行。 为了解决这个问题,可以采用以下几种方法: 1. 减小batch size:减小批量大小可以减少每个小批量所需要的内存量,从而减少GPU内存的压力。但减小批量大小会降低训练速度和模型的收敛速度,需要权衡利弊。 2. 使用分布式训练:分布式训练可以将训练数据分布到多个GPU上,并行计算,从而降低每个GPU的负担。但需要对代码进行一定的修改和调整,并且需要在多个GPU之间进行通信,涉及到一定的技术难度。 3. 调整模型结构:可以通过精简模型结构、减少模型参数等方式来降低模型的计算复杂度,从而减少GPU内存的占用。但调整模型结构可能会影响模型的性能和精度。 4. 提高GPU显存的利用率:可以通过将数据存储和计算转化为张量形式、采用深度学习库的API等方式来提高GPU显存的利用率,从而减少内存的占用。 在使用Pytorch进行深度学习训练时,需要根据具体情况采用以上的一种或多种方法来解决GPU内存超出的问题,以保证训练的稳定性和效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值