Vicuna云端实践

简介

Vicuna是开源领域最强最著名的大语言模型,是UC伯克利大学的研究人员联合其它几家研究机构共同推出的一系列基于LLaMA微调的大语言模型。它是一个开源聊天机器人,具备增强的数据集和易于使用的可扩展基础设施支持,因为极其良好的表现以及官方提供的匿名评测而广受欢迎。

Vicuna基于LLaMA基础模型进行微调,数据为从ShareGPT.com收集的大约 7 万个用户共享对话。ShareGPT是一个ChatGPT数据共享网站,用户会上传自己觉得有趣的 ChatGPT 回答。

基于LLaMA-1微调的,由于LLaMA-1的限制,Vicuna不可用在商业上;Vicuna1.5系列则是基于LLaMA2微调的,支持免费商用,最高支持16K上下文。

Vicuna 1.5系列包含4个模型,与第一代相同参数的Vicuna 7B(1.5)、Vicuna 13B(1.5)以及在此基础上拓展的支持最高16K上下文输入的Vicuna 7B 16K和Vicuna 13B 16K两个模型。

Vicuna 13b可以直接支持中文。

部署

  • 阿里云创建实例
  • 初始化环境
apt-get update
apt-get install git-lfs 
git init
git lfs install 
  • 项目下载
git clone https://github.com/lm-sys/FastChat
cd FastChat
pip install –e .
  • 模型下载
git clone https://www.modelscope.cn/AI-ModelScope/vicuna-7b.git
  • 命令行界面执行
python cli.py --model-path /mnt/workspace/vicuna-7b/

1) 错误:ImportError: Cannot import name ‘LlamaTokenizer’from ‘transformers’

修复:pip install --upgrade transformers
详情如下:
在这里插入图片描述
2) 错误:ImportError:LlamaTokenizer requires the SentencePiece library but it was not found in your environment.

修复:pip install SentencePiece
详情如下:
在这里插入图片描述
3) 执行命令结果如下:

python cli.py --model-path /mnt/workspace/vicuna-7b/

在这里插入图片描述

  • Webui执行

如果想要以web UI方式提供服务,则需要配置3个部分:

web servers,用户的交互界面;
model workers,托管模型;
controller,用以协调web server和model worker。

执行过程如下所示:
1) 启动控制器:

python controller.py --host 0.0.0.0

在这里插入图片描述
2) 启动model worker:

python model_worker.py --model-path /mnt/workspace/vicuna-7b/ --model-name vicuna-7b --host 0.0.0.0

在这里插入图片描述
3) 测试消息:

python test_message.py --model-name vicuna-7b

在这里插入图片描述
4) 启动gradio web server:

python gradio_web_server.py --port xxx(如:8506)

在这里插入图片描述
5) 浏览器展示:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮姑娘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值