梯度下降的原理
**引言:**梯度下降在机器学习中非常重要。机器学习的核心内容就是把数据投入一个设计好的模型中,让模型自动的“学习”,从而优化模型的各种参数,最终使得在某一组参数下该模型能够最佳地匹配该学习任务。这个“学习”的过程就是机器学习算法的关键。梯度下降法(Gradient Descent)就是实现该“学习”过程的一种最常见的方式,尤其是在深度学习(神经网络)模型中。各种教材中常常使用大雾中下山的例子介绍梯度下降法,梯度下降的方法与下山相似,函数代表着一座山,我们的目标就是找到这个函数的最小值,也就是山底。这个过





