Mobile Net论文笔记

轻量化模型主要围绕减少计算量,减少参数,降低实际运行时间,简化底层实现方式等这几个方面,提出了深度可分离卷积,分组卷积,可调超参数降低空间分辨率和减少通道数,新的激活函数等方法

深度可分离卷积

常规卷积

对于3x5x5的输入,如果想要得到4x3x3的feature map,那么卷积核的shape为3x3x3x4;
在这里插入图片描述
因此卷积层的参数数量即:卷积核W x 卷积核H x 输入通道数 x 输出通道数
计算量(padding=0时)即:卷积核W x 卷积核H x (图片W-卷积核W+1) x (图片H-卷积核H+1) x 输入通道数 x 输出通道数
如果进行填充:卷积核W x 卷积核H x (图片W-卷积核W+2P+1) x (图片H-卷积核H+2P+1) x 输入通道数 x 输出通道数):

深度可分离卷积

深度可分离卷积的核心思想在就于把普通卷积拆分为Depthwise+Pointwise两部分
Depthwise(Mobile Net V1)是分组卷积的极端表现,即“Group = Cin”,即输入的每一个通道都单独当做一个组来计算。
标准卷积:
在这里插入图片描述
分组卷积:
在这里插入图片描述
分组卷积使得计算量减少到原来的1/g,(g代表分的组数)
Pointwise作用是串联信息,当把卷积分组,虽然减少了计算量,但是不同分组之间并没有关联,不能共享信息,因此使用卷积核大小为(1,1)的普通卷积,在对上述分组卷积所得到结果进行一次卷积操作,这样就可以把原本不关联的信息串在一起整合起来。
Mobile Net V1的“分组Depthwise+串联Pointwise”的计算方式概览:
在这里插入图片描述
将普通卷积更换成深度可分离卷积计算量的对比
在这里插入图片描述

两个超参数

α:宽度乘数(Width Multiplier: Thinner Models)用于缩减模型的宽度
所有层通道数(channel)乘以α(四舍五入),模型大小和计算量都近似下降到原来的α2倍,α∈(0,1]
β:分辨率乘数(Resolution Multiplier: Reduced Representation)用于控制input image大小
输入层分辨率乘以β参数,等价于所有层的分辨率乘以β,模型大小不变,分辨率降为原来的β2,β∈(0,1],降低输入图像的分辨率

实验结果

  1. 深度可分离卷积 和 普通卷积 的对比
    在这里插入图片描述
  2. 在ImageNet上分类实验的对比
    在这里插入图片描述
    可以看到在ImageNet上的准确率相比较VGG16虽然下降了接近1%,但是MobileNet的计算量只有VGG16的不到4%,参数量只有VGG16的3%
  3. 细粒度图像分类实验的对比
    在这里插入图片描述
  4. Large Scale Geolocalizaton(大规模地理定位)
    在这里插入图片描述
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值