3D卷积网络论文阅读笔记

这篇博客探讨了3D U-Net在脑瘤分割中最佳的数据增强方法,发现亮度增强和弹性形变最有效。接着介绍了TransBTS,它结合了卷积和Transformer以实现多模态脑瘤分割,并在BraTS数据集上进行了实验。TransBTSV2通过拓宽而非加深Transformer架构,减少了参数和计算复杂度,提升了性能。此外,还提到了SwinUNETR和其他基于Transformer的分割方法在MRI图像上的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、What is the best data augmentation approach for brain tumor segmentation using 3D U-Net?

实验

数据集

BraTS 2020

数据增强方法

• Flipping翻转: 以1/3的概率随机沿着三个轴之一翻转
• Rotation旋转: 从限定范围(0到 15◦或到30◦或到60◦或到90◦)的均匀分布中随机选择角度旋转
• Scale缩放: 通过从范围为±10%或为±20%的均匀分布中随机选择的因子,对每个轴进行缩放
• Brightness亮度调整: 幂律γ强度变换,其参数增益(g)和γ从均匀分布的0.8-1.2之间随机选择。亮度(I)根据公式:Inew=g·Iγ随机改变
• Elastic deformation弹性变形: 带正方形变形网格的弹性变形,位移采样来自标准差σ=2、4、6或8体素的正态分布,其中平滑由每个维的3阶样条滤波器完成

实验结果


PE:Patch extraction

结论

数据增强在许多情况下显著提高了分割网络的性能,且亮度增强和弹性形变的效果最好,并且与仅使用一种增强技术相比,不同的增强技术的组合并不能提供进一步的改进。

代码
(作者的EVALUATION OF AUGMENTATION METHODS IN CLASSIFYING AUTISM SPECTRUM DISORDERS FROM FMRI DATA WITH 3D CONVOLUTIONAL NEURAL NETWORKS表明,数据增强对分类的准确性只提供了微小的改进)

2、TransBTS: Multimodal Brain Tumor Segmentation Using Transformer

代码:https://github.com/Wenxuan-1119/TransBTS
论文:https://arxiv.org/abs/2103.04430

创新点

使用卷积提取局部特征,使用transformer得到全局特征;

网络结构

在这里插入图片描述
类似于3d U-net,有收缩路径和展开路径,但是用跨步卷积取代了双卷积+最大池化

实验

数据集

BraTS2019: 335 cases of patients for training and 125 cases for validation
BraTS2020: 369 cases for training, 125 cases for validation and 166 cases for testing

标签

标签具有四个类别:背景(0),坏死性和非增强性肿瘤(标记1),肿瘤周围水肿(2)和GD增强性肿瘤(4)。

评价指标

通过Dice系数和Hausdirff距离(95%)指标来测量分割的准确性,以增强区域(ET,1),肿瘤核心区域(TC,1,4)以及整个肿瘤区域(WT,1,2,4)。

数据增强

(1) random cropping: from 240 × 240 × 155 to 128 × 128 × 128
(2) random mirror flipping across the axial, coronal and sagittal planes by a probability of 0.5
(3) random intensity shift between [-0.1, 0.1] and scale between [0.9, 1.1].

训练细节

softmax Dice损失用于训练网络,L2 Norm用于正则化,权重衰减率为10-5

实验结果

在这里插入图片描述
在这里插入图片描述
(在评论区看到复现效果差,存疑)

3、TransBTSV2: Wider Instead of Deeper Transformer for Medical Image Segmentation

代码:https://github.com/Wenxuan-1119/TransBTS
论文:https://arxiv.org/abs/2201.12785

创新点

(1)Transformer中原始的自注意机制导致了关于序列长度的O(n2)时间和空间复杂度。同时Transformer的性能在很大程度上取决于数据集的规模,为了缓解这个问题,许多最先进的方法转向大规模数据集的预训练。然而,医学图像数据集普遍缺乏可用的训练样本,使得Transformer对医学图像的预训练变得不切实际
inspired by the inverted design in MobileNetV2, we propose a
novel insight to pursue wider instead of deeper Transformer
architecture.
采取这种方法,与最初的TransBTS相比,模型复杂性显著降低(参数减少了53.62%,FLOPs减少了27.75%)
(2)不规则形病变给医学图像分割带来了巨大的挑战。在U-Net体系结构中,编码器中的特征图对几何信息更为敏感,对目标区域的识别也至关重要。
为此,提出了一个有效的和高效的可变形瓶颈模块(DBM),它可以从编码器特征学习体积空间偏移,并适应分割目标的各种转换。

网络结构

在这里插入图片描述
Transformer部分由L个重新设计的Transformer模块组成,每个模块包含flexibly widened multihead self-attention (FW-MHSA) block和feed-forward
Network (FFN)
第l个模块的输出可以表示为:(LN(∗) is the layer normalization)
在这里插入图片描述
在最初的TransBTS中,transformer层的数量为L=4,Transformer部分占模型参数的70.81%。在本文章中,把transformer层数减为1,但是宽度变为2。

DBM模块

在这里插入图片描述
每个DBM由两个1×1×1卷积、一个3×3×3可变形卷积和传统残差连接组成。为了最大限度地减少提出的DBM带来的计算开销,作者部署了两个1 × 1 × 1卷积(即上图所示的Reduction和Restoration layer)来降低和恢复信道维数

实验

数据集和对应的数据增强方法

(1)BraTS 2019 and BraTS 2020
灰度强度归一化、
(2)LiTS 2017
(3)KiTS 2019
在LiTS2017和KiTS2019数据集上,由于这两个CT数据集的体素间隔是不均匀的,因此需要将所有情况重新采样到一个共同的体素间距。
random cropping, random mirror flipping and random intensity shift

实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

B, TR, FEM, DBM, QK↑ REFERS TO BASELINE, TRANSFORMER, FEATURE EXPANSION MODULE, DEFORMABLE BOTTLENECK MODULE, THE PROPOSED FW-MHSA IN REDESIGNED TRANSFORMER BLOCK.

TransBTS是一个中等大小的模型,具有32.99M参数和333G FLOPs。通过本文提出的改进架构设计,TransBTSV2只有15.30M参数和241G FLOPs,与作者原来的TransBTS相比,追求更宽而不是更深的Transformer可以大大降低复杂度(参数减少53.62%,FLOPs减少27.63%),但同时显著提高了模型性能。

4、Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images

5、Robust Semantic Segmentation of Brain Tumor Regions from 3D MRIs

6、Fully Transformer Networks for Semantic Image Segmentation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值