开放集域适应文献阅读二

Open Set Domain Adaptation by Backpropagation 基于反向传播的开集域适应

1 本文贡献

在这里插入图片描述

  1. 提出了一种更具挑战性的不提供任何未知源样本的开放集域自适应(OSDA).
  2. 提出了一种利用对抗性训练的开放集域自适应场景的方法. 分类器被训练为在源样本和目标样本之间形成边界,而生成器被训练为使目标样本远离边界.
  3. 评估了我们的数字和对象数据集自适应方法,并证明了其有效性.

2 方法

2.1 总体构想

  一组标记的源图像 { X s , Y s } \left\{X_s,Y_s\right\} {XsYs}.
  未标记的目标图像 X t X_t Xt.
  源图像仅从已知类绘制,而目标图像可以从未知类绘制。作者训练了一个特征生成网络 G G G,它接收输入 x s x_s xs x t x_t xt,以及一个网络 C C C,它从 G G G 中获取特征并将其分类为 K + 1 K+1 K+1 类,其中 K K K 表示已知类别的数量。因此, C C C 每一个样本输出一个对数 { l 1 , l 2 , l 3 , … , l K + 1 } \left\{l_1, l_2,l_3,\ldots, l_{K+1}\right\} {l1,l2,l3,,lK+1} K + 1 K+1 K+1 维向量。
  然后通过应用softmax函数将逻辑转换为类概率.
p ( y = j ∣ x ) = exp ⁡ ( l j ) ∑ k = 1 K + 1 exp ⁡ ( l k ) p(y=j \mid \boldsymbol{x})=\frac{\exp \left(l_j\right)}{\sum_{k=1}^{K+1} \exp \left(l_k\right)} p(y=jx)=k=1K+1exp(lk)exp(lj)
  作者建议通过弱训练分类器来为未知类建立伪决策边界,以将目标样本识别为未知类. 然后训练一个特征生成器来欺骗分类器. 重要的是,特征生成器必须将未知目标样本与已知目标样本分离.
  作者训练分类器输出 p ( y = K + 1 ∣ x t ) = t p\left(y=K+1 \mid \boldsymbol{x}_t\right) = t p(y=K+1xt)=t,其中 0 < t < 1 0<t<1 0<t<1 . 训练生成器以欺骗分类器. 也就是说,生成器的目标是最大化分类器的误差. t t t 的大小是可以变化的.
在这里插入图片描述

2.2 训练程序

  首先,我们训练分类器和生成器来正确地对源样本进行分类. 为此,我们使用标准交叉熵损失.
L s ( x s , y s ) = − log ⁡ ( p ( y = y s ∣ x s ) ) p ( y = y s ∣ x s ) = ( C ∘ G ( x s ) ) y s \begin{aligned} L_s\left(\boldsymbol{x}_s, y_s\right) &=-\log \left(p\left(y=y_s \mid \boldsymbol{x}_s\right)\right) \\ p\left(y=y_s \mid \boldsymbol{x}_s\right) &=\left(C \circ G\left(\boldsymbol{x}_s\right)\right)_{y_s} \end{aligned} Ls(xs,ys)p(y=ysxs)=log(p(y=ysxs))=(CG(xs))ys
  为了训练分类器为未知样本建立边界,提出利用二元交叉熵损失. t t t 设置为0.5.
L a d v ( x t ) = − t log ⁡ ( p ( y = K + 1 ∣ x t ) ) − ( 1 − t ) log ⁡ ( 1 − p ( y = K + 1 ∣ x t ) ) L_{a d v}\left(\boldsymbol{x}_t\right)=-t \log \left(p\left(y=K+1 \mid \boldsymbol{x}_t\right)\right)-(1-t) \log \left(1-p\left(y=K+1 \mid \boldsymbol{x}_t\right)\right) Ladv(xt)=tlog(p(y=K+1xt))(1t)log(1p(y=K+1xt))
对于分类器,首先对于source数据要做优化,使得分类效果达到最好;对于target域的数据他想要将其概率固定为 t t t ,所以最小化器loss函数

对于特征提取器,首先对于source数据要要做优化,使得分类效果达到最好;对于target域的数据他想要将其概率远离为 t t t ,所以最大化器loss函数
min ⁡ C L s ( x s , y s ) + L a d v ( x t ) min ⁡ G L s ( x s , y s ) − L a d v ( x t ) \begin{aligned} &\min _C L_s\left(\boldsymbol{x}_s, y_s\right)+L_{a d v}\left(\boldsymbol{x}_t\right) \\ &\min _G L_s\left(\boldsymbol{x}_s, y_s\right)-L_{a d v}\left(\boldsymbol{x}_t\right) \end{aligned} CminLs(xs,ys)+Ladv(xt)GminLs(xs,ys)Ladv(xt)
算法如Alg.1
在这里插入图片描述

2.3 与现有方法的比较

  与现有方法相比,有三个主要区别.

  1. 大多数现有方法在训练期间无法访问未知样本,因此它们无法训练特征提取器学习特征以拒绝它们. 该方法中,未知目标样本包含在训练样本中,尽管我们不知道哪些是未知样本. 在这种情况下,我们的方法可以训练特征提取器以拒绝未知样本.
  2. 如果测试样本的任何已知类别的概率不大于阈值,则现有方法拒绝未知样本. 然而,该方法中可以考虑阈值在样本之间变化,因为模型将不同的分类输出分配给不同的样本.
  3. 特征提取器形成已知类和未知类之间的伪决策边界. 因此,特征提取器可以识别每个目标样本与未知类别的边界之间的距离. 它试图使它远离边界. 进而表示,使得与已知源样本相似的样本与已知类对齐,而与已知源样本不同的样本与它们分离.

3 小结

  本文提出了一种新的用于开集域适应的对抗性学习方法. 提出的方法能够生成能够从已知目标样本中分离未知目标样本的特征. 此外,该方法不需要未知的源样本.

参考文献

[1] Saito, K., Yamamoto, S., Ushiku, Y., Harada, T. (2018). Open Set Domain Adaptation by Backpropagation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science(), vol 11209. Springer, Cham. https://doi.org/10.1007/978-3-030-01228-1_10
[2] https://blog.csdn.net/qq_42935317/article/details/125077525

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1.,自带PDF阅读器,左侧打开PDF,选择一段话,右侧自动给出翻译,中英互译。不支持其他小语言。 2.,右上方翻译引擎选项中有五个翻译引擎可供切换。支持百度、谷歌、谷歌生物医学专用翻译、有道翻译、搜狗翻译,总能满足你的喜好。 3.,可以选中单词、句子、段落后松掉鼠标,右侧立即给出翻译,翻译在右侧栏显示比起悬浮显示有更好的使用体验。不支持全文翻译。 4.,翻译过程中,右侧原文处可以修改后,右键-重新翻译。此功能很多使用场景,可当成输入翻译功能使用。 5.,引擎3名称:生物医学专用翻译,实质上是针对学术方面专业术语做了特别优化,是看英文文献首选。理工科专业词汇也做过优化,因此也适合于非医学专业。 6.,支持英译中 和中译英两个方向的翻译。不支持其他小语种。 7.,右上方菜单,其他功能-输入翻译模式,可以输入或粘贴入短的或长的文本进行翻译(每次5000字符以内)。 8.,可直接作为PDF阅读器使用,单窗口模式/多窗口模式可切换(其他功能 菜单中),不依赖其他pdf阅读器。 9.,在EndNote或NoteExpress中直接调用知云打开文献【需要确保把知云设置为默认PDF阅读器】。 10.,支持打开简单的word文档【打开word时候实质是将word转换成pdf再打开,需要确保电脑安装了完整版微软OFFICE2010及以上版本】 11.,快捷键调整右侧翻译框中文字大小(Ctrl键+加号 和 Ctrl键+减号)

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值