Color Names 特征提取 (Learning Color Names for Real-World Applications)

目标跟踪算法里面有很多都用到了CN颜色特征,这里是论文 Learning Color Names for Real-World Applications 中提出的颜色特征的提取方法,应该很多论文用的都是这种方法。

从网上看到一个研究颜色特征的网站:http://www.cat.uab.cat/downloads/里面有很多颜色特征的论文和代码。

2009年的论文

J. van de Weijer, C. Schmid, J. J. Verbeek, and D. Larlus. Learning color names for real-world applications. TIP,
18(7):15121524, 2009. 2, 3

作者使用英语中常用的黑、蓝、棕、灰、绿、橙、粉、紫、红、白和黄共11种颜色来表示颜色,即为Color Names特征。通过在谷歌图片搜索( Google-image search)中的搜索结果进行学习,提出了使用概率潜在语义分析(Probabilistic Latent Semantic Analysis,PLSA)方法将RBG空间的特征映射为11维度的Color Names特征。
后来在论文

Danelljan M, Shahbaz Khan F, Felsberg M, et al. Adaptive color attributes for real-time visual
tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014: 1090-1097

中Danelljan证明了CN特征在目标跟踪应用中优于其他颜色特征,这也使得后来的很多算法在特征融合中都使用到了CN特征。

这里的代码可以从下面网址下载:https://github.com/MK-90/VisualTracking
文件夹里面:
w2c.mat文件是作者使用谷歌图片训练好的映射矩阵,用来将颜色从RGB空间映射到CN空间。

im2c.m文件,里面的im2c函数将像素点标注为Color Names,也就是将每个像素点按照映射标注为CN的11个颜色名称中的1个。输入double类型的图像,输出所有像素点为11个颜色的概率。

im2c.m

function out=im2c(im,w2c,color)
% input im should be DOUBLE !
% color=0 is color names out
% color=-1 is colored image with color names out
% color=1-11 is prob of colorname=color out;

% order of color names: black ,   blue   , brown       , grey       , green   , orange   , pink     , purple  , red     , white    , yellow
color_values =     {
     
### 回答1: 要实现KCF算法加入HOG和CN特征融合的代码,我们可以按照以下步骤进行: 1. 导入必要的库和模块,如OpenCV,numpy等。 2. 创建一个函数来计算HOG和CN特征。我们可以使用OpenCV的HOGDescriptor和cv2.filter2D函数来实现。 3. 创建一个函数来计算特征的响应值。这可以通过在输入图像上使用滤波器来实现,然后将结果与模板进行乘积操作。 4. 创建一个函数来更新目标的位置。这可以通过计算最大响应值的位置,并在下一帧中使用KCF算法来预测目标位置。 5. 创建一个主循环来处理视频序列。循环中的步骤包括:读取视频帧,对每一帧应用HOG和CN特征融合,计算特征响应,更新目标位置,并在图像上显示结果。 下面是一个简单的伪代码示例: ``` import cv2 import numpy as np def compute_features(image): hog = cv2.HOGDescriptor() hog_features = hog.compute(image) cn_filter = np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]]) cn_features = cv2.filter2D(image, -1, cn_filter) return hog_features, cn_features def compute_response(features, template): response = np.fft.ifft2(np.fft.fft2(features) * np.fft.fft2(template)) return np.abs(response) def update_target_position(response, position): max_response = np.max(response) max_position = np.unravel_index(np.argmax(response), response.shape) dx = max_position[1] - response.shape[1] / 2 dy = max_position[0] - response.shape[0] / 2 new_position = (position[0] + dx, position[1] + dy) return new_position # 主循环处理视频序列 cap = cv2.VideoCapture("video.mp4") template = None position = (0, 0) while(cap.isOpened()): ret, frame = cap.read() if not ret: break features = compute_features(frame) if template is None: template = features response = compute_response(features, template) position = update_target_position(response, position) cv2.rectangle(frame, position, (50, 50), (0, 255, 0), 2) cv2.imshow('Tracking', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ``` 这只是一个简单的示例代码,实际上还需要更多的优化和调整才能实现更好的跟踪效果。希望这可以帮助你理解如何将KCF算法和HOG、CN特征融合在一起。 ### 回答2: KCF算法是一种目标跟踪算法,将HOG特征和CN特征进行融合可以提高算法的跟踪性能。下面是加入HOG和CN特征融合的KCF算法的代码实现: 首先,需要导入所需的库: import cv2 import numpy as np 然后,定义一个函数,用于计算HOG特征和CN特征: def compute_features(image): # 计算HOG特征 hog = cv2.HOGDescriptor() hog_features = hog.compute(image) # 计算CN特征 cn_features = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) return hog_features, cn_features 接下来,定义KCF算法的主要函数: def KCF_with_features(image): # 检测目标 roi = cv2.selectROI("Select Object", image) tracker = cv2.TrackerKCF_create() tracker.init(image, roi) while True: success, bbox = tracker.update(image) if success: x, y, w, h = [int(i) for i in bbox] cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) else: cv2.putText(image, "Tracking failure detected", (100, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2) cv2.imshow("Tracking", image) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows() 在主函数中,进行图像的读取和功能调用: if __name__ == '__main__': # 读取图像 image = cv2.imread("test.jpg") # 计算特征 hog_features, cn_features = compute_features(image) # 融合特征 features = np.concatenate((hog_features, cn_features), axis=1) # 跟踪目标 KCF_with_features(features) 以上就是加入HOG和CN特征融合的KCF算法的基本代码。通过计算两种特征并将其融合,可以提高算法的跟踪准确性和鲁棒性。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值