数据分析(numpy)----02.创建数组

import numpy as np

#方法有:
#1.array()
# def array(p_object, dtype=None, copy=True, order='K', subok=False, ndmin=0)
# eg:
a1 = np.array([1,2,3,4])
a2 = np.array([(1,2),(3,4)])
print(a1,a2)
a3=np.array([[1,2],[3,4]])
print(a3.dtype)

# dtype
a4 = np.array([[1,2],[3,4]],dtype=np.float32)
print(a4.dtype)

# 2.arange()函数创建一维数组
# 格式: arange(起,止,步长) 前闭后开
a5 = np.arange(0,1,0.1)
print(a5) #[ 0.   0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9]

a6 = np.arange(0,9,1.5)#[ 0.   1.5  3.   4.5  6.   7.5]
print(a6)


# 通常无法准确预估元素个数,所有我们一般使用linspace
# 3.使用函数linspace()  前后闭
# def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None):
a7 = np.linspace(1,10,10)
print(a7) #[  1.   2.   3.   4.   5.   6.   7.   8.   9.  10.]

# 4.logspace()--等比数列
# eg1:生成10^1~10^3之间的3个等比数值
a8 = np.logspace(1,3,3)
print('a8:',a8) #a8: [   10.   100.  1000.]

# eg2:生成2^0~2^10,10
a9=np.logspace(0,10,11,base=2,dtype=np.int32)
print(a9) #[   1    2    4    8   16   32   64  128  256  512 1024]

# 5.zeros()
a10 = np.zeros((2,3)) #两行三列零矩阵
print(a10)
# [[ 0.  0.  0.]
#  [ 0.  0.  0.]]

# ones()
a11 = np.ones((2,3))
print(a11)

# empty
# 该函数创建一个内容随机并且依赖于内存状态的数组
a12 = np.empty((2,3))
print(a12)

# 7.eye()
# 生成N阶矩阵,对角线元素为1
a13 = np.eye(3)
print(a13)

# 8.diag()函数
# 生成对角线矩阵
a14 = np.diag([1,2,3,4])
print(a14)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值