import numpy as np
#方法有:
#1.array()
# def array(p_object, dtype=None, copy=True, order='K', subok=False, ndmin=0)
# eg:
a1 = np.array([1,2,3,4])
a2 = np.array([(1,2),(3,4)])
print(a1,a2)
a3=np.array([[1,2],[3,4]])
print(a3.dtype)
# dtype
a4 = np.array([[1,2],[3,4]],dtype=np.float32)
print(a4.dtype)
# 2.arange()函数创建一维数组
# 格式: arange(起,止,步长) 前闭后开
a5 = np.arange(0,1,0.1)
print(a5) #[ 0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]
a6 = np.arange(0,9,1.5)#[ 0. 1.5 3. 4.5 6. 7.5]
print(a6)
# 通常无法准确预估元素个数,所有我们一般使用linspace
# 3.使用函数linspace() 前后闭
# def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None):
a7 = np.linspace(1,10,10)
print(a7) #[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
# 4.logspace()--等比数列
# eg1:生成10^1~10^3之间的3个等比数值
a8 = np.logspace(1,3,3)
print('a8:',a8) #a8: [ 10. 100. 1000.]
# eg2:生成2^0~2^10,10
a9=np.logspace(0,10,11,base=2,dtype=np.int32)
print(a9) #[ 1 2 4 8 16 32 64 128 256 512 1024]
# 5.zeros()
a10 = np.zeros((2,3)) #两行三列零矩阵
print(a10)
# [[ 0. 0. 0.]
# [ 0. 0. 0.]]
# ones()
a11 = np.ones((2,3))
print(a11)
# empty
# 该函数创建一个内容随机并且依赖于内存状态的数组
a12 = np.empty((2,3))
print(a12)
# 7.eye()
# 生成N阶矩阵,对角线元素为1
a13 = np.eye(3)
print(a13)
# 8.diag()函数
# 生成对角线矩阵
a14 = np.diag([1,2,3,4])
print(a14)
数据分析(numpy)----02.创建数组
最新推荐文章于 2022-11-15 11:50:36 发布