数据分析----numpy数组的三种创建方式

【原文链接】

一、使用列表创建numpy数组

1 使用numpy创建一维数组

在这里插入图片描述

2 使用numpy创建二维数组

在这里插入图片描述

3 使用numpy创建一维数组,源为不同数据类型的列表

如下,源虽然是不同类型的元素的列表,但是创建numpy对象后,都转换为字符串类型,类型的优先级是:字符串 > 浮点数 > 整数
在这里插入图片描述

二、通过读取图片创建多维numpy数组

1 将图片信息读取到numpy数组中

首先在jupyter根目录中上传了一张"100.png"的图片,然后使用如下代码即可读取

import matplotlib.pyplot as plt
img_arr=plt.imread("./100.png")
img_arr

回显如下:

array([[[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        ...,
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]],

       [[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        ...,
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]],

       [[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        ...,
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]],

       ...,

       [[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        ...,
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]],

       [[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        ...,
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]],

       [[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        ...,
        [1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]]], dtype=float32)

2 在jupyter中读取图片数据后并显示

在这里插入图片描述

3 对图片数组数据处理

对数组中每个元素减0.1,图像已经发生了变化
在这里插入图片描述

三、通过指定函数生成numpy数组

1 生成多维数组

在这里插入图片描述

2 生成一维线性数组

在这里插入图片描述

3 生成一维等差数列

在这里插入图片描述

4 生成随机的多维数组

在这里插入图片描述

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
实验报告: 一、实验目的和要求 本次实验的主题为“Numpy数值计算”,旨在让我们掌握Numpy基本数据结构、Numpy数组创建和基础运算,以及Numpy数组的统计分析方法。具体要求如下: 1、了解Numpy的基本数据结构,包括数组、矩阵等。 2、学会使用Numpy创建数组,并掌握数组的索引、切片、重塑等操作。 3、学会使用Numpy进行数组的基本运算,如加、减、乘、除等。 4、学会使用Numpy进行数组的统计分析,包括最大值、最小值、平均值、方差等。 二、实验过程 1、创建数组 我们首先需要了解Numpy的基本数据结构——数组数组可以看作是一种有序的元素集合,每个元素都有一个数字索引。Numpy提供了多种创建数组方式,如下所示: import numpy as np # 从列表创建一维数组 a = np.array([1, 2, 3, 4, 5]) print(a) # 从列表创建二维数组 b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(b) # 创建全零数组 c = np.zeros((3, 3)) print(c) # 创建全一数组 d = np.ones((4, 4)) print(d) # 创建随机数数组 e = np.random.rand(3, 3) print(e) 2、数组的索引、切片和重塑 与Python中的列表类似,Numpy数组也支持索引、切片和重塑等操作。如下所示: # 数组索引 print(a[2]) print(b[1][2]) # 数组切片 print(a[1:4]) print(b[1:, 1:]) # 数组重塑 f = np.arange(12).reshape(3, 4) print(f) 3、数组的基本运算 Numpy支持数组的基本运算,如加、减、乘、除等。如下所示: # 数组加法 g = np.array([[1, 2], [3, 4]]) h = np.array([[5, 6], [7, 8]]) print(g + h) # 数组减法 print(g - h) # 数组乘法 print(g * h) # 数组除法 print(g / h) 4、数组的统计分析 Numpy提供了多种数组的统计分析方法,如最大值、最小值、平均值、方差等。如下所示: # 数组最大值 print(np.max(g)) # 数组最小值 print(np.min(g)) # 数组平均值 print(np.mean(g)) # 数组方差 print(np.var(g)) 三、实验结果 经过以上实验,我们成功地掌握了Numpy的基本数据结构、数组创建和基础运算,以及数组的统计分析方法。我们可以使用Numpy进行更为高效和准确的数值计算,并且可以快速地进行数据可视化和分析。 四、实验总结 本次实验让我们深入了解了Numpy的数值计算和数据分析功能,掌握了创建数组数组的索引、切片和重塑、数组的基本运算和统计分析等技能。在日后的学习和应用中,我们将更加熟练地使用Numpy进行数据处理和分析,并且可以更好地应对各种数据分析任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

redrose2100

您的鼓励是我最大的创作动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值