布隆过滤器

什么是布隆过滤器

本质上布隆过滤器是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”。

实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。

实现原理

当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在。这就是布隆过滤器的基本思想。
在这里插入图片描述

缺点

bloom filter之所以能做到在时间和空间上的效率比较高,是因为牺牲了判断的准确率、删除的便利性

  • 存在误判,可能要查到的元素并没有在容器中,但是hash之后得到的k个位置上值都是1。如果bloom filter中存储的是黑名单,那么可以通过建立一个白名单来存储可能会误判的元素。
  • 删除困难。一个放入容器的元素映射到bit数组的k个位置上是1,删除的时候不能简单的直接置为0,可能会影响其他元素的判断,可以采用Counting Bloom Filter。

删除元素

基本的布隆过滤器不支持删除操作,但是 Counting filters 提供了一种可以不用重新构建布隆过滤器但却支持元素删除操作的方法。在Counting filters中原来的位数组中的每一位由 bit 扩展为 n-bit 计数器,实际上,基本的布隆过滤器可以看作是只有一位的计数器的Counting filters。

原来的插入操作也被扩展为把 n-bit 的位计数器加1,查找操作即检查位数组非零即可,而删除操作定义为把位数组的相应位减1,但是该方法也有位的算术溢出问题,即某一位在多次删除操作后可能变成负值,所以位数组大小 m 需要充分大。

另外一个问题是Counting filters不具备伸缩性,由于Counting filters不能扩展,所以需要保存的最大的元素个数需要提前知道。否则一旦插入的元素个数超过了位数组的容量,false positive的发生概率将会急剧增加。当然也有人提出了一种基于 D-left Hash 方法实现支持删除操作的布隆过滤器,同时空间效率也比Counting filters高。

bloom filter 实现

在使用bloom filter时,绕不过的两点是预估数据量n以及期望的误判率fpp,

在实现bloom filter时,绕不过的两点就是hash函数的选取以及bit数组的大小。
在这里插入图片描述

k 为哈希函数个数,m 为布隆过滤器长度,n 为插入的元素个数,p 为误报率

对于一个确定的场景,我们预估要存的数据量为n,期望的误判率为fpp,然后需要计算我们需要的Bit数组的大小m,以及hash函数的个数k,并选择hash函数:

在这里插入图片描述

使用BloomFilter

 <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>23.0</version>
 </dependency>    

/**
 * 测试布隆过滤器(可用于redis缓存穿透)
 * @author 敖丙
 */
public class TestBloomFilter {
    private static int total = 1000000;
    private static BloomFilter<Integer> bf = BloomFilter.create(Funnels.integerFunnel(), total);
//    private static BloomFilter<Integer> bf = BloomFilter.create(Funnels.integerFunnel(), total, 0.001);
    public static void main(String[] args) {
        // 初始化1000000条数据到过滤器中
        for (int i = 0; i < total; i++) {
            bf.put(i);
        }
        // 匹配已在过滤器中的值,是否有匹配不上的
        for (int i = 0; i < total; i++) {
            if (!bf.mightContain(i)) {
                System.out.println("有坏人逃脱了~~~");
            }
        }
        // 匹配不在过滤器中的10000个值,有多少匹配出来
        int count = 0;
        for (int i = total; i < total + 10000; i++) {
            if (bf.mightContain(i)) {
                count++;
            }
        }
        System.out.println("误伤的数量:" + count);
    }

}

注:错误率越大,所需空间和时间越小,错误率越小,所需空间和时间约大

大Value拆分

Redis 因其支持 setbit 和 getbit 操作,且纯内存性能高等特点,因此天然就可以作为布隆过滤器来使用。但是布隆过滤器的不当使用极易产生大 Value,增加 Redis 阻塞风险,因此生成环境中建议对体积庞大的布隆过滤器进行拆分。

拆分的形式方法多种多样,但是本质是不要将 Hash(Key) 之后的请求分散在多个节点的多个小 bitmap 上,而是应该拆分成多个小 bitmap 之后,对一个 Key 的所有哈希函数都落在这一个小 bitmap 上。

应用场景

  1. cerberus在收集监控数据的时候, 有的系统的监控项量会很大, 需要检查一个监控项的名字是否已经被记录到db过了, 如果没有的话就需要写入db.
  2. 爬虫过滤已抓到的url就不再抓,可用bloom filter过滤
  3. 垃圾邮件过滤。如果用哈希表,每存储一亿个 email地址,就需要 1.6GB的内存(用哈希表实现的具体办法是将每一个 email地址对应成一个八字节的信息指纹,然后将这些信息指纹存入哈希表,由于哈希表的存储效率一般只有 50%,因此一个 email地址需要占用十六个字节。一亿个地址大约要 1.6GB,即十六亿字节的内存)。因此存贮几十亿个邮件地址可能需要上百 GB的内存。而Bloom Filter只需要哈希表 1/8到 1/4 的大小就能解决同样的问题。
  4. 在redis预防缓存穿透的时候用。因为布隆过滤器可以明确知道某个查询数据库不存在,所以可以过滤掉无效的查询到数据库,减少数据库的压力。

参考资料

1.Bloom Filters - the math,Bloom_filter-wikipedia
2.知乎@Young Chen
3. counting Bloom
4. @敖丙的某一篇关于布隆过滤器的文章

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值