题目
题目来源
你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。
示例:
输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
偷窃到的最高金额 = 2 + 9 + 1 = 12 。
输入: [1,4,1,1,8]
输出: 12
解释: 偷窃 2 号房屋 (金额 = 4), 然后偷窃 5 号房屋 (金额 = 8)。
偷窃到的最高金额 = 4 + 8 = 12 。
解题思路
此题可以简单理解为,当前有一组数字(例:[1,2,3,1]),需要在这些数选出一堆数字,要求条件有两个:1.选出的数字两两不相邻;2.选出的所有数字相加总和最大。
根据要求条件1和2,此题不是简单的奇偶数问题,并不能通过所有奇数位数字相加或偶数位数字相加得到。
此题属于经典的动态规划算法题。
总结公式为:OPT(i) = max{OPT(i-2) +arr[i],OPT(i-1)}
- 定义数据状态:即数据元素的含义,cur为当前房屋的到当前房屋为止窃取到的总金额,pre为到当前房屋的前一个房屋为止所窃取到的总金额;
- 建立状态转移公式:(这里用数组来描述一下,容易理解,dp[i]表示新的cur,dp[i-1]表示pre,dp[i-2]表示上一个cur) 因此:dp[i] = max(dp[i-1],dp[i-2]+num) ,num为当前房屋的金额;
- 设定初值:这里我们可以仔细考虑下,因为我们要从起始房屋开始,但是要保证i-1,i-2不能导致越界。因此我们可以设cur = 0,pre = 0,来方便从第一号房屋计算;
- 压缩空间:可以优化到空间复杂度已经为O(1)了;
- 选取结果:选取dp[-1],即cur,即偷窃金额的最优值。
class Solution:
def rob(self, nums: List[int]) -> int:
cur, pre = 0, 0 # 初始状态设定
for num in nums:
cur, pre = max(pre + num, cur), cur
return cur