
传统图像算法与处理工具代码
文章平均质量分 52
聚焦传统图像算法,分享各类处理工具的实现代码,从基础到进阶,助力读者掌握图像算法原理与编程实践。
学技术的大胜嗷
路虽远行则将至
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLO标准分割数据集转labelme进行可视化
LabelMe是进行图像分割的标注软件,但不支持YOLO格式的分割数据集。,会将新的json标签存在labelme_annotations目录下。在我们的YOLO标准数据集中,目录结构如下所示(本文将探讨如何将YOLO标准分割数据集转换为。: 该文件夹包含所有待处理的图像文件,图片的。,方便在训练和可视化时进行类别的识别和标注。只要给出images所在的目录就可以。格式,以便进行可视化和进一步分析。图片目录、标签目录和一个类别文件。: 此文件夹存储与图像对应的标签。得到如下json标签。原创 2025-07-09 09:03:42 · 361 阅读 · 0 评论 -
将.xml格式转换为YOLO所需的.txt文件格式
这段Python代码的主要功能是从XML格式的标注文件中提取边界框数据,并将其转换为YOLOv5模型所需的.txt文件格式。对代码加了详细解释。原创 2024-09-02 16:16:11 · 2332 阅读 · 0 评论 -
cv::Mat::reshape 与手动构造 cv::Mat + 转置的差异
【摘要】在处理YOLO系列模型输出时,reshape操作与转置操作存在本质区别。模型输出通常为[116,8400]格式(116个属性×8400个候选框),但后处理需要按框组织数据。reshape仅改变内存解释方式,会导致属性错位(如将连续x坐标误解析为多属性组合);而转置.t()则真正重排数据,使每行对应一个候选框的全部属性。实验表明,错误使用reshape会导致检测结果混乱,正确做法是:先构造[116,8400]矩阵再转置为[8400,116],确保数据按框组织。关键点在于理解模型按属性存储数据的特性与后原创 2025-09-04 18:25:15 · 547 阅读 · 0 评论