一、DataFrame的建构整理
- 转置
- 行和列的增加减少变动
(1)列的增加可以有2种情况:使用索引列的方法;使用concat函数合并
(2)行的增加有3种情况:使用concat函数合并,使用append函数增加
(3)drop函数和del函数删除
concat函数参数介绍,函数简介
pandas 数据合并方法汇总
concat合并两个dataframe 合并的多个示例 - 重置索引reindex
- 比较少用:替换
二、DataFrame的运算与函数
- 简单运算中+、-、*是简单运算符可以直接使用,而除法需要通过div方法,例如
data1.div(data2,fill_value=0)
- 函数应用,.apply(函数名,axis=0),如果需要应用到行上就将axis=1。
三、DataFrame的描述
- 排序、给出排名:分别用sort和rank函数
- 数据缺失值和重复值
import pandas as pd
df1=pd.DataFrame({1:['Zames']*2+['Tin']+['bin'],2:'Jack',3:'Marry',4:'Jess'},index=['a','b','c','d'])
print(df1)
print('显示哪一行重复:\n',df1.duplicated())
print('显示去重结果:\n',df1.drop_duplicates())
判断DataFrame哪一个位置上是缺失值需要使用isnull()函数,返回元素是bool的DataFrame
四、DataFrame数据规整化
-
选出或保留不是缺失值的数据(索引配合Notnull()函数)
-
缺失值的填充fillna(method=)函数
fillna()函数详解 -
缺失值的选择删除 dropna()函数
含缺失值的DataFrame建立与dropna示例
dropna函数参数简介 -
重复数据的删除 df.drop_duplicates()函数