【Python】Pandas DataFrame整理、运算操作

一、DataFrame的建构整理

  1. 转置
  2. 行和列的增加减少变动
    (1)列的增加可以有2种情况:使用索引列的方法;使用concat函数合并
    (2)行的增加有3种情况:使用concat函数合并,使用append函数增加
    (3)drop函数和del函数删除
    concat函数参数介绍,函数简介
    pandas 数据合并方法汇总
    concat合并两个dataframe 合并的多个示例
  3. 重置索引reindex
  4. 比较少用:替换

二、DataFrame的运算与函数

  1. 简单运算中+、-、*是简单运算符可以直接使用,而除法需要通过div方法,例如
data1.div(data2,fill_value=0)
  1. 函数应用,.apply(函数名,axis=0),如果需要应用到行上就将axis=1。

三、DataFrame的描述

  1. 排序、给出排名:分别用sort和rank函数
  2. 数据缺失值和重复值
import pandas as pd
df1=pd.DataFrame({1:['Zames']*2+['Tin']+['bin'],2:'Jack',3:'Marry',4:'Jess'},index=['a','b','c','d'])
print(df1)
print('显示哪一行重复:\n',df1.duplicated())
print('显示去重结果:\n',df1.drop_duplicates())

判断DataFrame哪一个位置上是缺失值需要使用isnull()函数,返回元素是bool的DataFrame

四、DataFrame数据规整化

  1. 选出或保留不是缺失值的数据(索引配合Notnull()函数)

  2. 缺失值的填充fillna(method=)函数
    fillna()函数详解

  3. 缺失值的选择删除 dropna()函数
    含缺失值的DataFrame建立与dropna示例
    dropna函数参数简介

  4. 重复数据的删除 df.drop_duplicates()函数

缺失值处理方案详解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值