7-36 掉入陷阱的数字

7-36 掉入陷阱的数字 (15 分)

对任意一个自然数N​0
​​,先将其各位数字相加求和,再将其和乘以3后加上1,变成一个新自然数N​1​​;然后对N​1
​​重复这种操作,可以产生新自然数N​2​​;……多次重复这种操作,运算结果最终会得到一个固定不变的数N​k​​,就像掉入一个数字“陷阱”。
本题要求对输入的自然数,给出其掉入“陷阱”的过程。
输入格式:
在一行内给出一个自然数N​0(N0​​<30000)。
输出格式:
对于输入的N​0,逐行输出其掉入陷阱的步骤。第i行描述N掉入陷阱的第i步,
格式为: i:N​i
​​ (i≥1)。当某一步得到的自然数结果N
​k
​​(k≥1)与上一步N
​k−1
​​相同时,停止输出。
输入样例:
5
输出样例:
1:16
2:22
3:13
4:13

#include<stdio.h>
int main()
{
	int i,n[100000],sum=0,s1,s2,s3,s4,s5;
	scanf("%d",&n[0]);
	for(i=1;n[i-1]!=13;i++)
	{
		s5=n[i-1]/10000;
		s4=(n[i-1]-s5*10000)/1000;
		s3=(n[i-1]-s5*10000-s4*1000)/100;
		s2=(n[i-1]-s5*10000-s4*1000-s3*100)/10;
		s1=n[i-1]%10;
		sum=s1+s2+s3+s4+s5;
		n[i]=sum*3+1;
		printf("%d:%d\n",i,n[i]);
	}
	printf("%d:13",i);
	return 0;
}
掉入陷阱数字”可能是指在 Python 中的数字类型和运算中容易出现的一些陷阱。以下是一些常见的陷阱: 1. 浮点数精度问题:因为计算机使用二进制存储浮点数,所以在进行浮点数运算时可能会出现精度问题。例如: ```python >>> 0.1 + 0.2 0.30000000000000004 ``` 这里的结果并不是我们期望的 0.3,而是一个近似值。这种情况下,可以使用 `decimal` 模块来解决精度问题。 2. 整数除法问题:在 Python 2 中,整数除法 `/` 的结果是一个整数,因此可能导致精度损失。而在 Python 3 中,整数除法 `/` 的结果会自动转换为浮点数,因此不会出现这个问题。但是,如果想要获得整数除法的结果,可以使用 `//` 运算符。 3. 二进制位运算问题:在进行二进制位运算时,需要注意 Python 中的位运算符的优级。例如,`&` 运算符的优级比 `==` 运算符要低,因此需要使用括号来确保正确的运算顺序。 4. 浮点数的比较问题:由于浮点数的精度问题,不能直接使用 `==` 运算符来比较两个浮点数是否相等。可以使用 `math.isclose` 函数来进行比较。 5. 整数溢出问题:在进行整数运算时,需要注意整数的范围。如果运算结果超出了整数的范围,就会出现整数溢出的问题。可以使用 `sys.maxsize` 来获取当前系统的整数范围。 以上是一些常见的 Python 数字陷阱,需要在编写代码时注意避免。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值