- 博客(39)
- 收藏
- 关注
原创 Burp Suite-第九章 如何使用Burp Repeater
BurpRepeater作为BurpSuite中一款手工验证HTTP消息的测试工具,通常用于多次重放请求响应和手工修改请求消息的修改后对服务器端响应的消息分析。
2022-07-24 20:46:12 1003 1
原创 Burp Suite-第八章 如何使用Burp Intruder
BurpIntruder作为BurpSuite中一款功能极其强大的自动化测试工具,通常被系统安全渗透测试人员被使用在各种任务测试的场景中。
2022-07-24 20:37:40 2190
原创 Burp Suite-第七章 如何使用Burp Scanner
BurpScanner的功能主要是用来自动检测web系统的各种,我们可以使用BurpScanner代替我们手工去对系统进行普通漏洞类型的渗透测试,从而能使得我们把更多的精力放在那些必须要人工去验证的漏洞上。在使用BurpScanner之前,我们除了要正确配置BurpProxy并设置浏览器代理外,还需要在BurpTarget的站点地图中存在需要扫描的域和URL模块路径。如下图所示。...
2022-07-24 19:26:21 2541
原创 Burp Suite-第六章 如何使用Burp Spider
通过前一章的学习,我们了解到,存在于BurpTarget中的站点信息,我们可以直接传送到BurpSpider中进行站点信息的爬取。
2022-07-24 17:28:27 491
原创 Burp Suite-第五章 如何使用Burp Target
BurpTarget组件主要包含站点地图、目标域、Target工具三部分组成,他们帮助渗透测试人员更好地了解目标应用的整体状况、当前的工作涉及哪些目标域、分析可能存在的攻击面等信息,下面我们就分别来看看BurpTarget的三个组成部分。...
2022-07-24 17:17:18 512
原创 Burp Suite-第四章 SSL和Proxy高级选项
在前一章,我们已经学习了HTTP消息如何通过BurpProxy进行拦截和处理,本章我们将继续学习HTTPS协议消息的拦截和处理。HTTPS协议是为了数据传输安全的需要,在HTTP原有的基础上,加入了安全套接字层SSL协议,通过CA证书来验证服务器的身份,并对通信消息进行加密。基于HTTPS协议这些特性,我们在使用BurpProxy代理时,需要增加更多的设置,才能拦截HTTPS的消息。...
2022-07-24 16:42:26 613
原创 Burp Suite-第三章 如何使用Burp Suite代理
BurpProxy是BurpSuite以用户驱动测试流程功能的核心,通过代理模式,可以让我们拦截、查看、修改所有在客户端和服务端之间传输的数据。
2022-07-24 16:25:09 2001
原创 Burp Suite-第二章 Burp Suite代理和浏览器设置
BurpSuite代理工具是以拦截代理的方式,拦截所有通过代理的网络流量,如客户端的请求数据、服务器端的返回信息等。BurpSuite主要拦截http和https协议的流量,通过拦截,BurpSuite以中间人的方式,可以对客户端请求数据、服务端返回做各种处理,以达到安全评估测试的目的。在日常工作中,我们最常用的web客户端就是的web浏览器,我们可以通过代理的设置,做到对web浏览器的流量拦截,并对经过BurpSuite代理的流量数据进行处理。...
2022-07-24 16:05:56 3677
原创 Burp Suite-第一章 Burp Suite 安装和环境配置
BurpSuite是一个集成化的渗透测试工具,它集合了多种渗透测试组件,使我们自动化地或手工地能更好的完成对web应用的渗透测试和攻击。在渗透测试中,我们使用BurpSuite将使得测试工作变得更加容易和方便,即使在不需要娴熟的技巧的情况下,只有我们熟悉BurpSuite的使用,也使得渗透测试工作变得轻松和高效。BurpSuite是由Java语言编写而成,而Java自身的跨平台性,使得软件的学习和使用更加方便。...
2022-07-24 15:57:29 517
原创 网络安全学习(千锋网络安全笔记)5--NTFS安全权限
1、通过设置NTFS,实现不同用户访问不同对象(文件、文件夹)的权限2、分配正确访问权限后用户才能访问不同权限3、设置权限防止资源被篡改、删除文件系统即在外部存储设备上组织文件的方法常见文件系统FATNTFSwindows系统EXTlinux系统。...
2022-07-21 17:25:15 1388
原创 网络安全学习(千锋网络安全笔记)2--IP与基本DOS命令
域名系统(服务)协议(DNS)是一种分布式网络目录服务,主要用于域名与IP地址的相互转换,以及控制因特网的电子邮件的发送。将主机的IP地址与子网掩码按位相与即可得到该注意的网络位。IP的构成网络位+主机位(网络位相同的IP地址,为同一网段)或形如X.X.X.X的十进制地址(X的范围为0-255)shutdown-s-f-t100定时强制关机。ping-n数字#修改ping包的数量,默认为4。ping-l数字#修改ping包的大小。2、如在同一个网段,则直接发出去,不找网关。...
2022-07-19 15:35:45 1301
原创 网络安全学习(千锋网络安全笔记)1--搭建虚拟机
虚拟机(winxp,win7,win2003,win2008)的安装虚拟机使用VM配置虚拟机的一般步骤一、虚拟机的硬件配置及系统安装二、优化虚拟机,如调出桌面图标、安装VMtools、磁盘分区管理、、做快照、克隆等。
2022-07-17 09:27:11 1235
原创 《PyTorch深度学习实践》-B站 刘二大人-day7
多分类问题B站 刘二大人 的PyTorch深度学习实践——多分类问题在多分类的视频中,我们了解到,我们要对图中的数字进行输出分类,判断他们是什么数字,这里就会出现两个问题,一个是让输出相互抑制,并且让概率之和相加正好为1,二是概率都大于0.视频中截图说明:1、softmax的输入不需要再做非线性变换,也就是说softmax之前不再需要激活函数(relu)。softmax两个作用,如果在进行softmax前的input有负数,通过指数变换,得到正数。所有类的概率求和为1。2、y的标签编码方式是o
2022-06-08 10:37:48 293 1
原创 Java编程基础学习(尚硅谷)day4
数组(Array),是多个相同类型数据按一定顺序排列的集合,并使用一个名字命名,并通过编号的方式对这些数据进行统一管理数组的常见概念数组名下标(或索引)元素数组的长度数组本身是引用数据类型,而数组中的元素可以是任何数据类型,包括基本数据类型和引用数据类型。创建数组对象会在内存中开辟一整块连续的空间,而数组名中引用的是这块连续空间的首地址。数组的长度一旦确定,就不能修改。我们可以直接通过下标(或索引)的方式调用指定位置的元素,速度很快。数组的分类:按照维度:一维数组、二维数组、三维数组、…
2022-06-06 17:04:02 153
原创 Java编程基础学习(尚硅谷)day3
Java编程基础学习(尚硅谷)day3流程控制语句是用来控制程序中各语句执行顺序的语句,可以把语句组合成能完成一定功能的小逻辑模块。其流程控制方式采用结构化程序设计中规定的三种基本流程结构,即:顺序结构分支结构循环结构顺序结构程序从上到下逐行地执行,中间没有任何判断和跳转。分支结构根据条件,选择性地执行某段代码。有if…else和switch-case两种分支语句。循环结构根据循环条件,重复性的执行某段代码。有while、do…while、for三种循环语句。注:JDK1.5提供了f
2022-06-06 11:14:56 94
原创 Java编程基础学习(尚硅谷)day2
Java编程基础学习(尚硅谷)day21.关键字与保留字1.关键字(keyword)的定义和特点定义:被Java语言赋予了特殊含义,用做专门用途的字符串(单词)特点:关键字中所有字母都为小写2.保留字(reserved word)ava保留字:现有Java版本尚未使用,但以后版本可能会作为关键字使用。自己命名标识符时要避免使用这些保留字goto 、const2.标识符(Identifier)标识符:Java 对各种变量、方法和类等要素命名时使用的字符序列称为标识符技巧:凡是自己可
2022-05-31 14:27:00 155
原创 Java编程基础学习(尚硅谷) day1
什么是计算机语言语言:是人与人之间用于沟通的一种方式。例如:中国人与中国人用普通话沟通。而中国人要和英国人交流,就要学习英语。计算机语言:人与计算机交流的方式。如果人要与计算机交流,那么就要学习计算机语言。计算机语言有很多种。如:C ,C++ ,Java ,PHP , Kotlin,Python,Scala等。从Java的应用领域来分,Java语言的应用方向主要表现在以下几个方面:• 企业级应用:主要指复杂的大企业的软件系统、各种类型的网站。Java的安全机制以及它的跨平台的优势,使它在分布式
2022-05-31 10:43:51 165
原创 吴恩达机器学习第14-15章
吴恩达机器学习第14-15章第十四章14-1 目标I:数据压缩数据压缩能够让我们的算法提升速度。首先举了一个厘米和英尺的例子,因为厘米本身可以转化为英尺,所以可以将数据进行压缩。再举一个例子,是将三维降到两维。将点全部投影到平面上,然后重新用Z1和Z2坐标来表示屏幕向量。14-2 目标II: 可视化在做对GDP的调查中,数据特征总共有50维,而经过处理,将数据特征降低要2维。14-3 主成分分析(PCA)问题规划1我们用直线拟合数据时,可以观察数据集到直线上投影的距离。而PCA所做的
2022-04-29 16:26:00 1045
原创 吴恩达机器学习第12-13章
吴恩达机器学习第12-13章第12章12-1 优化目标在监督学习中,很多监督学习算法的性能都非常相似,所以经常要考虑的东西不是你要去选取A算法或者B算法,而是更多地考虑你构建这些算法时所使用的数据量,这就体现了你应用这些算法时的技巧。比如你所设计的用于学习算法的特征的选择以及正则化参数的选择等等。但是还有一个更加强大的算法,它广泛地应用于工业界和学术界,它被称为支持向量机。与logistic回归和神经网络相比,支持向量机或称为SVM,在学习复炸的非线性方程时,能够提供一种更为清晰和更加强大的方式。我
2022-04-27 17:16:21 191
原创 吴恩达机器学习第10-11章
吴恩达机器学习第10-11章第十章10-1 下一步决定做什么1我们现在将重点关注的问题是,假如我们在研发一个机器学习系统或者想着试着改进一个机器学习系统的性能,我们应该如何决定,接下来应该选择哪一条道路。我们仍然以房价预测的例子来讲解。当我们发现预测值和真实值的误差很多时,接下来应该怎么办。其中一个办法是我们可以训练更多的训练集。另外我们还可以尝试更少的特征。或者可以试图得到更多的特征。当然我们也可以采用增加多项式特征的方法,还可以增加或减少正则化参数λ。方法很多,就意味着我们选择就相当困难,有
2022-04-25 15:34:12 830
原创 吴恩达机器学习第8-9章
吴恩达机器学习第8-9章第8章8-1 非线性假设对于一个复杂的样本模型,如果用logistc回归算法的话,很容易产生过拟合,当特征数很大的时候,会使特征空间急剧膨胀,用增加特征数,来建立非线性分类器,并不是一个好做法。在计算机视觉中,计算机看到的实际是一个数据矩阵,若像素点达到3百万个时,特征数也是3百万个,用ligistic回归算法的话,时间成本是相当高的。8-2 神经元和大脑神经网络的起源是去试图模仿人的大脑。我们能用神经网络去学习触觉,嗅觉等等。例如,我们可以用舌头去训练看的能力、我们可
2022-04-22 16:38:06 155
原创 吴恩达机器学习第6-7章
吴恩达机器学习第6-7章由于第5章主要讲的是Octave的语法,但现在我们主要用的都是python来进行AI编程。所以第五章我们就不总结了,感兴趣的朋友可以去看看。第6章6-1 分类分类在现实生活中运用到的地方非常多,比如垃圾邮件分类、网络欺诈、肿瘤的预测。正类一般表示为1,负类一般表示为0.当然,多分类问题的话会有0,1,2,3等的标记,对于肿瘤的预测,如果预测函数的结果大于0.5,则我们预测为正类,相反则为负类。有时候我们的预测算法可能的结果会大于1或者小于0,这显然是有点怪的。所以之后
2022-04-19 19:44:26 978
原创 吴恩达机器学习第3-4章
吴恩达机器学习第3-5章第三章第三章主要讲解矩阵的基础知识,如果你考过研了,你可以跳过。如果没有考过研的话,需要认真看一看,但由于讲得比较基础,可能会有很多不懂的地方,你可以找一找讲线性代数的课程看一看。第四章4-1多变量若我们有四个特征量,当我们有多个特征值后,我们的预测方程就应该变化。为了方便表达,我们会令x0=1,相当于额外定义了一个特征量x0。之后的预测方程就可以变为4-2 多元梯度下降根据上一章得出的多元特征的预测函数和代价函数,则可以得出他的新梯度下降的表示形式。4
2022-04-19 11:26:25 1069
原创 机器学习篇-逻辑回归的分类预测
机器学习篇-逻辑回归的分类预测1 逻辑回归的介绍和应用1.1 逻辑回归的介绍逻辑回归(Logistic regression,简称LR)虽然其中带有"回归"两个字,但逻辑回归其实是一个分类模型,并且广泛应用于各个领域之中。虽然现在深度学习相对于这些传统方法更为火热,但实则这些传统方法由于其独特的优势依然广泛应用于各个领域中。而对于逻辑回归而且,最为突出的两点就是其模型简单和模型的可解释性强。逻辑回归模型的优劣势:优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;缺点:容易欠拟
2022-04-14 11:46:01 5279 1
原创 《PyTorch深度学习实践》-B站 刘二大人-day6
加载数据集B站 刘二大人 的PyTorch深度学习实践——加载数据集这次的视频是继续优化上一个视频的代码,上次我们输入糖尿病病人的数据,在处理是没有才有分成几个部分的处理,而是一整坨的放进去进行计算了,所以在加载数据集这方面我们就优化一样,用MiniBatch将数据集进行划分。说明:1、DataSet 是抽象类,不能实例化对象,主要是用于构造我们的数据集2、DataLoader 需要获取DataSet提供的索引[i]和len;用来帮助我们加载数据,比如说做shuffle(提高数据集的随机性),ba
2022-02-23 14:37:54 184
原创 《PyTorch深度学习实践》-B站 刘二大人-day5
处理多维特征的输入B站 刘二大人 的PyTorch深度学习实践——处理多维特征的输入视频中截图说明:1、乘的权重(w)都一样,加的偏置(b)也一样。b变成矩阵时使用广播机制。神经网络的参数w和b是网络需要学习的,其他是已知的。 2、学习能力越强,有可能会把输入样本中噪声的规律也学到。我们要学习数据本身真实数据的规律,学习能力要有泛化能力。 3、该神经网络共3层;第一层是8维到6维的非线性空间变换,第二层是6维到4维的非线性空间变换,第三层是4维到1维的非线性空间变换。
2022-02-23 14:27:09 243
原创 《PyTorch深度学习实践》-B站 刘二大人-day4
逻辑斯蒂回归B站 刘二大人 的PyTorch深度学习实践——逻辑斯蒂回归视频中截图说明:1、 逻辑斯蒂回归和线性模型的明显区别是在线性模型的后面,添加了激活函数(非线性变换)2、分布的差异:KL散度,cross-entropy交叉熵说明:预测与标签越接近,BCE损失越小。代码说明:1、视频中代码F.sigmoid(self.linear(x))会引发warning,此处更改为torch.sigmoid(self.linear(x))2、BCELoss - Binary CrossEnt
2022-02-23 14:07:12 202
原创 《PyTorch深度学习实践》-B站 刘二大人-day3
反向传播back propagationB站 刘二大人 ,传送门PyTroch 深度学习实践——反向传播代码说明:1、w是Tensor(张量类型),Tensor中包含data和grad,data和grad也是Tensor。grad初始为None,调用l.backward()方法后w.grad为Tensor,故更新w.data时需使用w.grad.data。如果w需要计算梯度,那构建的计算图中,跟w相关的tensor都默认需要计算梯度。刘老师视频中a = torch.Tensor([1.0]) 本文中
2022-02-23 13:53:17 396 1
原创 《PyTorch深度学习实践》-B站 刘二大人-day2
梯度下降算法法B站 刘二大人 ,传送门PyTorch 深度学习实践 梯度下降法深度学习算法中,并没有过多的局部最优点。import matplotlib.pyplot as plt # prepare the training setx_data = [1.0, 2.0, 3.0]y_data = [2.0, 4.0, 6.0] # initial guess of weight w = 1.0 # define the model linear model y = w*xdef
2022-02-23 13:23:47 126
原创 《PyTorch深度学习实践》-B站 刘二大人-day1
第2讲 linear_model 源代码B站 刘二大人 ,传送门 PyTorch深度学习实践——线性模型代码说明:1、函数forward()中,有一个变量w。这个变量最终的值是从for循环中传入的。2、for循环中,使用了np.arange。3、python中zip()函数的用法:zip函数的原型为:zip([iterable, …])参数iterable为可迭代的对象,并且可以有多个参数。该函数返回一个以元组为元素的列表,其中第 i 个元组包含每个参数序列的第 i 个元素。返回的列表长度
2022-02-23 12:56:36 417
原创 什么是NumPy?
什么是NumPy?NumPy是Python中科学计算的基础包。它是一个Python库,提供多维数组对象,各种派生对象(如掩码数组和矩阵),以及用于数组快速操作的各种例程,包括数学,逻辑,形状操作,排序,选择,I / O离散傅立叶变换,基本线性代数,基本统计运算,随机模拟等等。NumPy包的核心是ndarray对象。这封装了同构数据类型的n维数组,许多操作在编译代码中执行以提高性能。NumPy数组和标准Python序列之间有几个重要的区别:NumPy数组在创建时具有固定大小,与Python列表(可以动态
2022-02-23 11:33:20 454
原创 pytorch
什么是pytorchPyTorch是一个提供两个高级功能的python包:具有强GPU加速度的张量计算(如numpy)深层神经网络建立在基于磁带的自动调整系统上您可以重用您最喜爱的python软件包,如numpy,scipy和Cython,以便在需要时扩展PyTorch。PyTorch在细粒度级别是由以下组件组成的库:包 描述torch 像NumPy这样的Tensor图书馆,拥有强大的GPU支持torch.autograd 一种基于磁带的自动分类库,支持所有可区分的Tensor操作手电筒
2022-02-23 10:19:01 857
原创 广度优先遍历(Breath First Search)
前言深度优先遍历(Depth First Search, 简称 DFS) 与广度优先遍历(Breath First Search)是图论中两种非常重要的算法,生产上广泛用于拓扑排序,寻路(走迷宫),搜索引擎,爬虫等,也频繁出现在 leetcode,高频面试题中。本文将会从以下几个方面来讲述深度优先遍历相信大家看了肯定会有收获。深度优先遍历深度优先遍历简介习题演练DFS在搜索引擎中的应用深度优先遍历简介广度优先遍历广度优先遍历,指的是从图的一个未遍历的节点出发,先遍历这个节点的相邻节点,
2022-02-14 15:41:10 24945 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人