从电子到电流

Current

因自由电子运动引发的电流包括三种:
传导电流(Conduction current):由导体电子漂移引发
对流(Convention current):由电子或离子在真空中运动引发
电解电流(Electrolytic current):由正离子和负离子的迁移引发

本次只涉及传导电流

Conduction current and current density

Conduction current

不依附任何特定原子的电子被称为自由电子(free electron)
自由电子可以在晶格中穿行,但正离子不行,所以金属中的电流,也被称为传导电流(Conduction current)可以被视为电子的流动。

Drift velocity

载流子运动的速度被称为漂移速度(drift velocity),运算中的漂移速度Vd是导体中载流子的平均速度
V_d=aτ=qτ/m_e E(m/s)
a是加速度,me是电子质量,τ是两次撞击之间的时间,q是单个电子的电荷
大多数情况下,漂移电流与电场成正比
v ⃗ d = μ e E ⃗ ( m / s ) v ⃗_d=μ_e E ⃗(m/s) vd=μeE(m/s)

μ e = q τ / m e ( m 2 / V ∗ s ) μ_e=qτ/m_e (m^2 /V*s) μe=qτ/me(m2/Vs)

Current density

单位时间电流强度等于通过的电荷与单位时间之比
∆ I = ∆ Q / ∆ t = N q v d A ∆I=∆Q/∆t=Nqv_d A I=Q/t=NqvdA
N是单位体积载流子的数量,A是通过的面积
定义 J=Nqv_d 为体电流密度
∆ I = J ⃗ ∗ A ⃗ ∆I=J ⃗*A ⃗ I=JA

上文中我们得到了v_d的表达式,试着带入电流密度,得到
I = ( q 2 N τ ) / m e A ⃗ ∗ E ⃗ I=(q^2 Nτ)/m_e A ⃗*E ⃗ I=(q2Nτ)/meAE

A和E前面那一堆东西就是电导率σ,则式子又可以表达成
I = σ A E 或 J ⃗ = σ E ⃗ I=σAE或 J ⃗=σE ⃗ I=σAEJ=σE

Resistivity

电导率的倒数是电阻率
ρ = 1 / σ ρ=1/σ ρ=1/σ

From Electromagnetics (EM) to Electric circuits (EC)

Relaxation time

弛豫时间τ是电荷被引入导体后重新分配到导体表面来保持导体内场强为0所使用的时间
ρ = ρ 0 e ( − t / τ ) ρ=ρ_0 e^(-t/τ) ρ=ρ0e(t/τ)
τ = ϵ / σ ( s ) τ=ϵ/σ (s) τ=ϵ/σ(s)

Joule’s Law

稳定电流条件下,功率密度P电场E乘电流密度J对漂移电流v的积分
P = ∫ v ▒ 〖 E ∗ J d v 〗 P=∫_v▒〖E*Jdv〗 P=vEJdv
从这个式子可以推出功率公式 P = I 2 R P=I^2 R P=I2R

Boundary conditions for current density

将电流密度分为tangential和normal
J 1 n = J 2 n J_1n=J_2n J1n=J2n
J 1 t / J 2 t = σ 1 / σ 2 J_1t/J_2t =σ_1/σ_2 J1t/J2t=σ1/σ2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值