Current
因自由电子运动引发的电流包括三种:
传导电流(Conduction current):由导体电子漂移引发
对流(Convention current):由电子或离子在真空中运动引发
电解电流(Electrolytic current):由正离子和负离子的迁移引发
本次只涉及传导电流
Conduction current and current density
Conduction current
不依附任何特定原子的电子被称为自由电子(free electron)
自由电子可以在晶格中穿行,但正离子不行,所以金属中的电流,也被称为传导电流(Conduction current)可以被视为电子的流动。
Drift velocity
载流子运动的速度被称为漂移速度(drift velocity),运算中的漂移速度Vd是导体中载流子的平均速度
V_d=aτ=qτ/m_e E(m/s)
a是加速度,me是电子质量,τ是两次撞击之间的时间,q是单个电子的电荷
大多数情况下,漂移电流与电场成正比
v
⃗
d
=
μ
e
E
⃗
(
m
/
s
)
v ⃗_d=μ_e E ⃗(m/s)
v⃗d=μeE⃗(m/s)
μ e = q τ / m e ( m 2 / V ∗ s ) μ_e=qτ/m_e (m^2 /V*s) μe=qτ/me(m2/V∗s)
Current density
单位时间电流强度等于通过的电荷与单位时间之比
∆
I
=
∆
Q
/
∆
t
=
N
q
v
d
A
∆I=∆Q/∆t=Nqv_d A
∆I=∆Q/∆t=NqvdA
N是单位体积载流子的数量,A是通过的面积
定义 J=Nqv_d 为体电流密度
∆
I
=
J
⃗
∗
A
⃗
∆I=J ⃗*A ⃗
∆I=J⃗∗A⃗
上文中我们得到了v_d的表达式,试着带入电流密度,得到
I
=
(
q
2
N
τ
)
/
m
e
A
⃗
∗
E
⃗
I=(q^2 Nτ)/m_e A ⃗*E ⃗
I=(q2Nτ)/meA⃗∗E⃗
A和E前面那一堆东西就是电导率σ,则式子又可以表达成
I
=
σ
A
E
或
J
⃗
=
σ
E
⃗
I=σAE或 J ⃗=σE ⃗
I=σAE或J⃗=σE⃗
Resistivity
电导率的倒数是电阻率
ρ
=
1
/
σ
ρ=1/σ
ρ=1/σ
From Electromagnetics (EM) to Electric circuits (EC)
Relaxation time
弛豫时间τ是电荷被引入导体后重新分配到导体表面来保持导体内场强为0所使用的时间
ρ
=
ρ
0
e
(
−
t
/
τ
)
ρ=ρ_0 e^(-t/τ)
ρ=ρ0e(−t/τ)
τ
=
ϵ
/
σ
(
s
)
τ=ϵ/σ (s)
τ=ϵ/σ(s)
Joule’s Law
稳定电流条件下,功率密度P电场E乘电流密度J对漂移电流v的积分
P
=
∫
v
▒
〖
E
∗
J
d
v
〗
P=∫_v▒〖E*Jdv〗
P=∫v▒〖E∗Jdv〗
从这个式子可以推出功率公式
P
=
I
2
R
P=I^2 R
P=I2R
Boundary conditions for current density
将电流密度分为tangential和normal
J
1
n
=
J
2
n
J_1n=J_2n
J1n=J2n
J
1
t
/
J
2
t
=
σ
1
/
σ
2
J_1t/J_2t =σ_1/σ_2
J1t/J2t=σ1/σ2