2^n+1的因数分解问题

本文探讨了形如2^n+1的数(费马数)的因数分解,揭示了非费马数的一些因子规律。通过实例解析了如何找到这些数的因子,特别指出当n为质数时的特殊情况,并提出对于n为质数的因子猜测,但发现该猜测在某些情况下并不成立。
摘要由CSDN通过智能技术生成

我们只讨论正整数集合的问题,N=2n +1

首先,关于N=2n +1(n=2a, a ∈正整数),事实上它就是费马数序列,
F0 21+1 =2 ,
F1 22 +1 =5 ,
F2 24+1 =17,
F3 28+1 = 257
F4 216+1 =65537
F5 232+1 =4294967297
法国数学家费马于1640年提出了以下猜想 [1] :

可以发现前5个是质数,因为第6个数实在太大了,费马认为这个数是质数。由此提出(费马没给出证明),形如的数都是质数的猜想。后来人们就把形如 N=2n+1(n=2a, a ∈正整数)的数叫费马数。
1732年,欧拉算出F5=641×6700417,也就是说F5不是质数,宣布了费马的这个猜想不成立,它不能作为一个求质数的公式。以后,人们又陆续找到了不少反例,如n=6 时,F6= =274177×67280421310721不是质数。至今这样的反例共找到了243个,却还没有找到第6个正面的例子,也就是说只有n=0,1,2,3,4这5个情况下,Fn才是质数。F6 以后费马数的分解情况请自行百度。

早已经有人证明,费马数的因数必然是2n+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值