我们只讨论正整数集合的问题,N=2n +1
首先,关于N=2n +1(n=2a, a ∈正整数),事实上它就是费马数序列,
F0 21+1 =2 ,
F1 22 +1 =5 ,
F2 24+1 =17,
F3 28+1 = 257
F4 216+1 =65537
F5 232+1 =4294967297
法国数学家费马于1640年提出了以下猜想 [1] :
可以发现前5个是质数,因为第6个数实在太大了,费马认为这个数是质数。由此提出(费马没给出证明),形如的数都是质数的猜想。后来人们就把形如 N=2n+1(n=2a, a ∈正整数)的数叫费马数。
1732年,欧拉算出F5=641×6700417,也就是说F5不是质数,宣布了费马的这个猜想不成立,它不能作为一个求质数的公式。以后,人们又陆续找到了不少反例,如n=6 时,F6= =274177×67280421310721不是质数。至今这样的反例共找到了243个,却还没有找到第6个正面的例子,也就是说只有n=0,1,2,3,4这5个情况下,Fn才是质数。F6 以后费马数的分解情况请自行百度。
早已经有人证明,费马数的因数必然是2n+