【知识点】机器学习降维方法

摘抄文章:打破“维度的诅咒”,机器学习降维大法好

为什么数据需要降维

机器模型用来帮忙预测一个目标变量,但是不一定输入图像的每一个特征都对应目标变量,这会使模型变得复杂。
这里所说的降维的纬度,就是图像的特征,对于图像分类模型来说,一个像素点就是一个特征

降维技术

1 特征选择

实用python的 scikit-learn库,使用散点图和热图来可视化不同特征的协方差,如果有高度相同的特征,就只留一个。

你可能会发现,在你的数据集的25个特征中,有7个对目标变量的影响占到了95%。所以能够删除18个特征,使机器学习模型变得更简单,而不会对模型的准确性产生太大影响。

2 投影技术

投影技术也被称为特征提取

这是在没有办法删除特征的时候使用的技术

这个技术现在也是看得似懂非懂

在这里插入图片描述
这是一堆围绕三维焦点的像“瑞士卷”的数据点集,可以采”用局部线性嵌入”(LLE)的方法来降维,降维完如下所示
在这里插入图片描述
这样就可以使用最简单的机器学习算法(线性回归)建模。

还可以使用主成分分析PCA来降维

投影技术存在两个缺点:

  1. 一旦你开发了投影技术,就必须先将新数据点转换到低维空间,然后再通过机器学习模型运行它们。但如果这个预处理步骤的成本太大,最后模型的收益太小的话,可能不太值。

  2. 转换后的数据点可能不能直接代表其原始特征,如果将它们再转换回原始空间可能很麻烦,某些情况下也不太可行,因此这可能会很难解释模型的推论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值