小红书销售数据分析-基于Excel的分析和可视化

一、数据源

数据来自于和鲸社区。本文已将源数据字段改为简单中文,并新增用户id一列便于分析。

1.数据说明

数据集包含29452条数据,部分数据字段说明

  • 第三方购买的数量:用户过往在app中从第三方购买的数量,为0则代表只在自营商品中购买
  • 性别 :0:女;1:男 ;未知则空缺
  • 是否参加活动:最近30天在app上有参与重点活动(讨论,卖家秀),0:未参加;1:参加;未知则空缺
  • 生命周期:分为A,B,C (分别对应注册6个月内,1年内,2年内)
  • 最近一次下单距今的天数:小于1则代表当天有下单 

2.部分数据展示如下

用户id性别年龄是否参与活动生命周期最近一次下单距今的天数第三方购买的数量购买金额累计购买金额
11590B4.26072.982343.87
21510A0.940200.998539.872
31790C4.29169.981687.646
4C14.90649.993498.846
5C21.13483.593968.49
61800C15.1310319.992811.491

二、数据处理 

  • 空值的检查与处理:多方考虑,不做删除处理
  • 异常值的检查与处理
  • 数据类型的检查与调整:已修改为合适的数据类型

对于缺失值:通过对数据的筛选等操作,可以看出性别、年龄、是否参加活动三列有许多空值数据,但其他列数据没有空值。那么缺失值对于其他列的某些研究影响不大,因此,我们不对缺失值进行删除处理。

三、数据分析

从以下几个方面进行研究:

1.研究性别对于用户购买金额的影响

结论:男性购买人数、累计购买金额和平均购买金额都比女性多(跟想象中的不一样),可以针对女性用户制定方案,提高女性用户消费人数。

注意:但由于性别列缺失值过多,总数据的1/3多都缺失,而且小红书上的性别可以随意填写,因此该分析结果存疑。

2.研究年龄对于用户购买金额的影响

将年龄进行分组,得到如下表格:

插入图表:

结论:15-19岁的用户购买人数最低,但平均购买金额最高,说明15-19岁的用户有很大的开发空间。40~79岁这部分中老年群体是小红书消费用户主力军。除了15-19岁群体平均购买最高,其他群体的平均购买金额相差不大。

注意:但由于年龄列缺失值过多,各年龄段严格不能均衡,尤其是15-19、20-24岁的用户样本过小,而且小红书上的年龄可以随意填写,因此该分析结果存疑。

3.是否参与活动对顾客购买金额的影响

结论:参加活动的用户以及累计购买金额较多,平均购买金额却是未参加活动用户的3/5。由此可看出,未参加活动的用户有很大的购买潜力,应该考虑如何才能吸引这部分人,提高购买次数

注意:是否参加活动列缺失值较多,样本不均衡,分析结果可能受影响比较大。

4.研究生命周期对于购买金额的影响

结论:注册2年内的用户数以及累计购买较多,但平均购买金额最低。注册6个月内的用户平均购买金额较高,说明生命周期在6个月的顾客购买力比较强。

5.是否在第三方购买的人数与金额比较

结论:第三方购买人数、平均购买金额都要比自营多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值