手写数字识别系统(python+K-近邻完整代码)

本文介绍了如何使用Python实现一个手写数字识别系统,该系统基于K-近邻(K-NN)算法。首先,将32*32的二进制数字图像转换为1024维向量,然后构建训练样本集矩阵。K-NN算法计算测试样本与训练样本之间的距离,并根据最近的k个邻居进行分类。经过运行,结果显示分类准确率为98.8372%。
摘要由CSDN通过智能技术生成
手写数字图片识别系统的介绍:
  • 由于数字图片是一个 32*32 维的二进制向量,不能直接放到模型中使用,所以:
    • 首先需要先将每一个 3232 维的向量转化为 1(3232)维的向量,即 11024 维数据向量
    • 第二步就是将所有经过转化后的 m 个训练样本,组合成一个 m*1024 维的训练样本集矩阵
    • K-近邻算法就是计算每一个测试样本与所有训练样本的距离,取其中 k 个距离较近的训练样本,通过投票法将测试样本归类到得票最多的一类
导入程序所需要的模块
import numpy as np
import operator
from os import listdir
定义将图像转换为向量的函数
# 将 32*32 的二进制图像转化为 1*1024 的向量
def img2vector(filename):
    returnVect = np.zeros((1, 1024))    # 存储图片像素的向量维度是1x1024,创建 1*1024 零矩阵
    fr = open(filename)
    for i in range(32):         # 按行读取
        lineStr = fr.readline()    # 拿到其中一行   [0,1,0,0,0,1,...]  32个数字
        for j in range(32):
            returnVect[0, 32*i+j] = int(lineStr[j])    # 图片尺寸是32x32,将其依次放入向量returnVect中
    return returnVect
# 测试代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值