手写数字图片识别系统的介绍:
- 由于数字图片是一个 32*32 维的二进制向量,不能直接放到模型中使用,所以:
- 首先需要先将每一个 3232 维的向量转化为 1(3232)维的向量,即 11024 维数据向量
- 第二步就是将所有经过转化后的 m 个训练样本,组合成一个 m*1024 维的训练样本集矩阵
- K-近邻算法就是计算每一个测试样本与所有训练样本的距离,取其中 k 个距离较近的训练样本,通过投票法将测试样本归类到得票最多的一类
导入程序所需要的模块
import numpy as np
import operator
from os import listdir
定义将图像转换为向量的函数
# 将 32*32 的二进制图像转化为 1*1024 的向量
def img2vector(filename):
returnVect = np.zeros((1, 1024)) # 存储图片像素的向量维度是1x1024,创建 1*1024 零矩阵
fr = open(filename)
for i in range(32): # 按行读取
lineStr = fr.readline() # 拿到其中一行 [0,1,0,0,0,1,...] 32个数字
for j in range(32):
returnVect[0, 32*i+j] = int(lineStr[j]) # 图片尺寸是32x32,将其依次放入向量returnVect中
return returnVect
# 测试代码