错排公式
来源于 《程序设计基础(C语言)(第2版)》
Question:某人写了n封信和n个信封,如果所有的信都装错了信封。求所有的信都装错信封,共有多少种不同情况?
分析:
这个问题看起来比较复杂,直接入手不容易找到解决问题的递推规律。
对n封信以及n个信封各自按照从1到 n 进行编号,当 n 个编号的信放在 n 个编号位置的信封时,信的编号与信封位置编号 各不对应 的方法数用 f[n] 表示,那么 f[n - 1] 就表示 n - 1个编号的信放在 n - 1个编号位置的信封,各不对应的方法数,其他类推。
第一步,把第n封信放在一个信封,比如第k个信封 (k ≠ n) ,一共有 n - 1种方法。
第二步,放编号为 k 的信,这时有两种情况:
(1) 把它放到第 n 个信封,那么,对于剩下的 n - 2 封信,需要放到剩余的 n - 2个信封且各不对应,就有 f[n - 2]种方法。
(2) 不把它放到位置 n,这时,对于这 n - 1 封信,放到剩余的 n - 1个信封且各不对应(此时假设第k封信与位置n为对应关系),有 f[n - 1]种方法。
由于(1)与(2)是同一步骤的两种不同情况,所以第二步放法总数即为(1)与(2)这同一步骤的两种情况放法之和,即为 f[n - 2] + f[n - 1]。
归纳:
由以上分析可知,由于整个过程是由上述第一步、第二步两个步骤实现,因此 n 封信放到 n 个信封全部放错的方法就是上述第一步与第二步方法之积,即
{ 递推关系式 f[n] = (n - 1) * ( f[n - 1] + f[n - 2] ) (n > 2)
{ 递推边界 f[1] = 0, f[2] = 1
由此可以很容易得到如下的程序:
#include <stdio.h>
#define N 50
int main()
{
int i, n;
long long int f[N + 1];
f[1] = 0;
f[2] = 1;
scanf("%d", &n);
for(i = 3; i < n; i++)
{
f[i] = (n - 1) * (f[i - 1] + f[i - 2]);
}
printf("%lld\n", f[n]);
return 0;
}
本人觉得错排公式的第二步的第(2)小步最难理解,因此看了许多其他人的文章,如果小伙伴们没看懂这边文章的内容,下面还有其他人的理解。
关于错排公式 其他人的理解:
1. https://blog.csdn.net/bengshakalakaka/article/details/83420150 这篇写的很容易懂!