前言
Python深度学习中,我们可能会基于Python来对人脸进行识别,在此类文章中,我们首要是要获取做多的图片数据,进而对于获取到的数据集进行处理。
在FaceDataset中具有丰富的公开人脸数据集,我们只需要将其下载下来,处理后即可。本次模拟使用lfw这个数据集,http://vis-www.cs.umass.edu/lfw/
以下是我下载好的数据集lfw-deepfunneled
问题来了
lfw中的图片是存放在多个文件夹中,这使得我们在训练时很不方便,因此,我们需要将这些图片提出出来,放在同一个文件夹中。
特别注意,目标文件夹一定要提前建好!!!
代码
import os
src_path = r'F:\MyProgram\Python\lfw-deepfunneled'
target_path = r'F:\MyProgram\Python\lfw'
def copy_picture(src_path, target_path):
# 获取src_path包含的文件或文件夹的名字的列表
fileList = os.listdir(src_path)
for file in fileList:
# 拼接路径
path = os.path.join(src_path, file)
# 判断path是否为目录,如果是目录,则递归
# 否则,将文件保存到另外目标文件夹
if os.path.isdir(path):
copy_picture(path, target_path)
else:
with open(path, 'rb') as rstream:
container = rstream.read()
path1 = os.path.join(target_path, file)
with open(path1, 'wb') as wstream:
wstream.write(container)
else:
print('finished copying ')
copy_picture(src_path, target_path)
结果
以上是简单的图片处理代码,非常感谢您的宝贵的时间来阅读,谢谢!!!