Python进行图片识别时,lfw中图片处理

前言

Python深度学习中,我们可能会基于Python来对人脸进行识别,在此类文章中,我们首要是要获取做多的图片数据,进而对于获取到的数据集进行处理。
在FaceDataset中具有丰富的公开人脸数据集,我们只需要将其下载下来,处理后即可。本次模拟使用lfw这个数据集,http://vis-www.cs.umass.edu/lfw/
以下是我下载好的数据集lfw-deepfunneled
在这里插入图片描述
在这里插入图片描述

问题来了

lfw中的图片是存放在多个文件夹中,这使得我们在训练时很不方便,因此,我们需要将这些图片提出出来,放在同一个文件夹中。
特别注意,目标文件夹一定要提前建好!!!

代码

import os

src_path = r'F:\MyProgram\Python\lfw-deepfunneled'
target_path = r'F:\MyProgram\Python\lfw'
def copy_picture(src_path, target_path):
    # 获取src_path包含的文件或文件夹的名字的列表
    fileList = os.listdir(src_path)
    for file in fileList:
        # 拼接路径
        path = os.path.join(src_path, file)
        # 判断path是否为目录,如果是目录,则递归
        # 否则,将文件保存到另外目标文件夹
        if os.path.isdir(path):
            copy_picture(path, target_path)
        else:
            with open(path, 'rb') as rstream:
                container = rstream.read()
                path1 = os.path.join(target_path, file)
                with open(path1, 'wb') as wstream:
                    wstream.write(container)
    else:
        print('finished copying ')


copy_picture(src_path, target_path)

结果

在这里插入图片描述


以上是简单的图片处理代码,非常感谢您的宝贵的时间来阅读,谢谢!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值