Beam Selection
- 1、Beam Selection in mm-Wave Multiuser MIMO Systems Using Compressive Sensing
- 2、Near-Optimal Beam Selection for Beamspace MmWave Massive MIMO Systems
- 3、Millimeter Wave Beam-Selection Using Out-of-Band Spatial Information
- 4、A Beam Selection Algorithm for Millimeter-Wave Multi-User MIMO Systems
- 5、Joint Design of Beam Selection and Precoding Matrices for mmWave MU-MIMO Systems Relying on Lens Antenna Arrays
- 6、A Novel Two-Stage Beam Selection Algorithm in mmWave Hybrid Beamforming System
- 7、Data-Driven-Based Analog Beam Selection for Hybrid Beamforming Under mm-Wave Channels
1、Beam Selection in mm-Wave Multiuser MIMO Systems Using Compressive Sensing
基于压缩传感的毫米波多用户MIMO系统波束选择
Abstract
本文研究了基站和用户配置天线阵列的毫米波多用户多输入多输出(MIMO)系统的波束选择问题。利用毫米波信道的一定稀疏性,提出了一种低复杂度的模拟波束形成波束选择方法。结果表明,利用压缩传感(CS)的概念,可以在不进行显式信道估计的情况下进行波束选择。由于各种原因(如背景噪声和干扰),一些用户可能会选择相同的BS光束,从而导致用户间的干扰较高。为了解决这一问题,我们进一步考虑了用户对BS波束的选择。仿真结果表明,该方法与需要全信道状态信息(CSI)的最优波束形成方法相比,在中/低信噪比(SNR)下,对于更多的用户,性能差距变得更小。由于大用户数天线阵计算复杂度高,难以采用最优波束形成方法,因此该方法在大天线阵可使用的毫米波系统中对BSS和用户具有很大的吸引力。
Introduction
毫米波(mm波)波段已被考虑为蜂窝系统,因为有一个更宽的带宽,这可以让我们轻松地增加数据率,以满足不断增长的无线高速数据服务需求[5]。由于毫米波信道的高路径损耗[6],室内通信通常考虑毫米波段。对于室外通信,波束形成可以采用[2]、[7]、[8],因为它可以利用高增益窄波束扩展通信范围,以克服高路径损耗。此外,波束形成有助于减少来自邻近小区的干扰,这可能是重要的,因为毫米波系统的站间距离较小。
波束形成在微波蜂窝系统中也起着至关重要的作用。如果在配备天线阵列的基站(BS)上可以获得信道状态信息(CSI),则可以使用多用户下行波束形成来通过减轻多用户干扰来提高频谱效率[9]、[10]。对于大型天线阵,用户对基站的CSI反馈可能不可行,因为其开销过高。在这种情况下,对于具有有限CSI反馈的下行波束形成,在丰富散射环境下的随机(正交)波束可以与用户选择一起使用[11]、[12]。特别地,在[12]中,有多组正交光束和多个时隙。在每个时隙中,导频或训练信号由BS使用相应的正交波束集传输,每个用户可以选择其中一个正交波束并反馈其索引以供下行链路波束选择。在BS中,可以根据总和率选择多组正交梁中的最佳组。虽然由于每组正交波束的数量有限(取决于天线的数量),活动用户的数量受到限制,但通过利用多用户分集,随着用户数量的增加,可以获得更好的性能[13]。此外,随着正交波束组数或时隙的增加,以训练过热为代价,可以提高性能。
一般来说,毫米波系统的波束形成不同于微波系统。如[1]所示,毫米波信道具有高路径衰减。此外,由于可靠传输的路径可能很少[3],波束形成需要利用有限散射环境下定向波束的路径[8]。在这种情况下,波束的结构不同于微波信道,混合波束形成在有限的硬件复杂度下可以获得良好的性能。
压缩传感(CS)已被引入估计稀疏信号或参数从测量或观测大空间。CS是一个强大的工具,可以应用于从图像压缩到雷达应用的许多问题[18]。在无线通信中,CS也应用于各种稀疏多径信道估计问题[19]C[21]和CSI反馈问题[22]、[23]。对于特定稀疏(或有限散射)环境下的毫米波信道估计,在[14]、[24]中使用了基于CS的方法
本文研究了由大天线阵的多用户和多用户组成的毫米波多用户系统中的波束选择1,该系统利用高空间选择性有效地降低了波束间干扰。特别地,我们将CS应用于BS和用户的模拟波束形成器的波束选择。在毫米波系统中,虽然模拟波束形成器可以用于BS的大型天线阵或前面提到的硬件复杂度有限的用户,但大型天线阵存在另一个关键问题。为了在多用户系统中进行波束选择,通常需要信道估计。由于基站必须同时估计所有用户的CSI,因此由于上行链路训练序列较长,预计会产生较高的信令开销。本文利用毫米波信道的一定稀疏性(或有限散射),提出了一种无需利用CS概念进行信道估计即可实现的波束选择方法。因此,对于具有模拟波束形成器的毫米波多用户系统,在成本(由于模拟波束形成器)和低信令开销(因为波束选择需要一个导频符号)方面,该方法可能是一个有吸引力的解决方案。请注意,使用cs选择梁的方法与[24]中的方法类似。然而,主要区别在于本文考虑了BS和用户梁的联合梁选择,而[24]中分别对每个用户进行了梁选择。本文的主要贡献如下:i)针对多用户毫米波多输入多输出(MIMO)系统,提出了一种模拟波束形成器波束选择方法;ii)(低复杂度)推导了基于CS的用户和基站波束选择算法,无需显式信道估计。
2、Near-Optimal Beam Selection for Beamspace MmWave Massive MIMO Systems
波束空间毫米波多输入多输出系统的近最优波束选择
Abstract
最近提出的波束空间MIMO概念可以利用波束选择来减少毫米波大规模MIMO系统中所需的射频链数量,而不会造成明显的性能损失。然而,由于波束空间中的同一波束可能会被不同的用户选择,传统的波束选择方案会受到严重的多用户干扰,并且由于某些射频链对总速率性能没有贡献,因此可能会浪费一些射频链。为了解决这些问题,在这封信中,我们提出了一种干涉感知(IA)波束选择。具体地说,通过考虑潜在的多用户干扰,提出的IA波束选择首先将所有用户分为两个用户组,即干扰用户(ius)和非干扰用户(nius)。对于NIUS,选择大功率的光束,而对于IUS,则采用基于sumrate最大化准则的低复杂度增量算法来选择合适的光束。仿真结果表明,与传统方案相比,IA波束选择方案能获得接近最优的和速率性能和更高的能量效率
Introduction
毫米波(mmwave)大规模多输入多输出(mimo)被认为是未来5G无线通信的关键技术[1],因为它的信号带宽[2]更宽,频谱效率更高,可以显著提高数据速率
然而,在实践中实现毫米波大规模多输入多输出并不是一项简单的任务。一个关键的挑战是,MIMO系统中的每个天线通常需要一个专用的射频(RF)链[3]。这导致了毫米波大规模MIMO系统硬件成本和能耗难以承受,天线数量巨大,射频链在毫米波频率下能耗较高[4]。为了减少所需的射频链数量,最近在开创性工作中提出了波束空间MIMO的概念[5]。通过采用可忽略性能损失的离散透镜阵列(DLA),波束空间MIMO可以将传统的空间信道转换为波束空间信道,以捕获毫米波频率下的信道稀疏度[2]。由于每个波束对应于波束空间MIMO[5]中的单个射频链,我们只能根据稀疏的波束空间信道选择少量的波束,以减少毫米波大规模MIMO系统1中所需的射频链数量。然而,大多数现有的波束选择方案都是基于最大幅度准则(本文中称为mm波束选择)[7],其中每个用户都会选择若干个较大幅度的波束。mm波束选择很简单,但面临两个问题
:i)它的目的是在不考虑多用户干扰的情况下尽可能多地保留每个用户的功率,这会导致可实现和速率的性能损失不可忽略
;ii)由于不同的射频链可能选择相同的波束,一些射频链可能会被浪费,因为它们具有e对总利率绩效没有贡献。
为了解决这些问题,本文提出了一种干涉感知波束选择方法。具体来说,通过考虑潜在的多用户干扰,IA波束选择首先将所有用户分为两个用户组,即干扰用户(IUS)和非干扰用户(NIUS)。对于NIUS,选择功率较大的光束,而对于IUS,则采用基于和速率最大化准则的低复杂度增量算法来选择光束。仿真结果表明,与传统的毫米波波束选择方法相比,该方法能获得更接近最优的和速率性能和更高的能量效率
3、Millimeter Wave Beam-Selection Using Out-of-Band Spatial Information
基于带外空间信息的毫米波波束选择
Abstract
毫米波(mmwave)通信是一种可行的高数据率应用解决方案,如车载覆盖通信和下一代蜂窝通信。配置毫米波链路,这可以通过信道估计或波束选择来完成,但是,这是一个巨大开销的来源。在本文中,我们提出使用在低于6千兆赫的空间信息提取来帮助建立毫米波链路。假设一个低于6千兆赫的全数字体系结构和一个在毫米波的模拟体系结构,我们概述了从低于6千兆赫的空间信息提取策略及其在毫米波压缩光束选择中的应用。具体地说,我们将压缩波束选择作为一个加权稀疏信号恢复问题,并从低于6GHz的信道中获取加权信息。此外,我们还概述了一个结构化的预编/合成器设计,以根据带外信息定制培训。我们还扩展了所提出的带外辅助压缩波束选择方法,以利用毫米波下所有有源副载波的信息。为了模拟多波段频率相关信道,我们回顾了以往对频率相关信道行为的研究,并概述了一个多频段信道模型。仿真结果表明,带外辅助波束选择可以显著降低带内单波束选择的训练开销。
Introduction
毫米波(mmwave)通信系统使用大型天线阵列和定向波束形成/预编码,以提供足够的链路裕度[2],[3]。由于天线可以压缩成较小的形状因子,因此在毫米波条件下,大阵列是可行的。然而,配置这些阵列并非没有挑战。首先,射频元件的高功耗使得全数字基带预编码变得困难[2]。第二,预编码设计通常依赖于信道状态信息,由于天线阵大、预波束形成信噪比低,在毫米波时很难获得信道状态信息。因此,提出了几种快速建立毫米波链路的方法。通常的策略是利用未知信道中的某种结构来帮助建立链路,例如稀疏性[4]、[5]或信道动态性
毫米波(mmwave)通信系统使用大型天线阵列和定向波束形成/预编码,以提供足够的链路裕度[2],[3]。由于天线可以压缩成较小的形状因子,因此在毫米波条件下,大阵列是可行的。然而,配置这些阵列并非没有挑战。首先,射频元件的高功耗使得全数字基带预编码变得困难[2]。第二,预编码设计通常依赖于信道状态信息,由于天线阵大、预波束形成信噪比低,在毫米波时很难获得信道状态信息。因此,提出了几种快速建立毫米波链路的方法。通常的策略是利用未知信道中的某种结构来帮助建立链路,例如稀疏性[4]、[5]或信道动态性
MMwaves在蜂窝系统[2]、[9]、[10]中有应用,包括固定无线接入[11]、回程[8]、移动接入[2]、[10]甚至车辆覆盖(v2x)通信[12]、[13]。V2X应用程序是有意义的,因为下一代智能车辆上的传感器可能产生高达数百Mbps[14],而当前的车辆通信机制不支持这种数据速率。由于带宽大,MMwave通信有潜力提供所需的数据速率。不幸的是,在高移动性中配置mmwave链路是一项挑战,因为链路配置可能会消耗大量的信道相干间隔,几乎没有时间用于利用.
我们建议利用从低频信道中提取的带外信息来减少建立毫米波链路的开销。这是相关的,因为毫米波系统可能会与低频系统一起部署:(i)提供广域控制信号;和/或(ii)多波段通信[15],[16]。由于子6 GHz和毫米波信道的空间特性相似,因此使用低频信息是可行的[17]。为了激发这一想法,考虑图1(a)所示的低于6千兆赫和毫米波的假设功率方位谱(pas)。这个过程基本上是相似的,我们把这个相似性称为空间同余,我们可以从低于6千兆赫的地方得到一个主方向的粗略估计,并将其用于毫米波。考虑一个基本的用例,其目的是从图1(b)所示的候选光束中选择一个适当的毫米波方向光束。图1(c)所示为Sub-6GHz系统在信道强方向上的定向光束。由于天线数量较少,因此SUB-6GHz系统的波束较宽。考虑到6千兆赫以下的空间波瓣,毫米波处的候选波束现在仅限于那些与6千兆赫以下的空间波瓣重叠的波束,如图1(d)所示.
4、A Beam Selection Algorithm for Millimeter-Wave Multi-User MIMO Systems
Abstract
毫米波(mmwave)频率提供了巨大的传输带宽,允许在给定的孔径范围内填充大量的天线,从而实现高维MIMO通信。实现这类系统的一个主要瓶颈是需要大量的射频链。在波束空间领域工作通过波束选择提供了一个有吸引力的解决方案。提出了一种新的下行链路毫米波多用户MIMO系统波束选择算法。该方法试图最大化和速率,消除多用户干扰。仿真结果表明,该方法优于现有方法。
Introduction
目前,大多数商用无线系统在低于6 GHz的载波频率下运行,在这一频率下,额外的频谱带宽是稀缺的。毫米波(mmwave)通信有望成为5G无线网络中提供千兆无线服务的重要组成部分[1],[2]。毫米波占据了从30GHz到300GHz的频谱,可以为无线通信提供巨大的带宽,约为2GHz[3]。毫米波的较短波长使我们能够将更多的天线元件封装到一个给定的天线孔径中,从而使高维多输入多输出(MIMO)操作成为可能[4]。这种高维毫米波MIMO系统具有很高的潜力,因为它们可以用于实现更高的波束形成/空间复用增益和/或使用窄波束来减少多用户干扰。
实现高维毫米波MIMO系统的主要障碍之一是硬件的复杂性。天线阵中的每个天线都需要由射频(RF)链驱动,这将消耗系统总成本的很大一部分。此外,射频链在毫米波频率下的功耗明显高于6千兆赫时的功耗,这使得拥有大量的射频链实际上是不允许的
天线选择、空间调制和模拟波束形成是减少MIMO系统中射频链数量的三种主要技术。前两种技术在底层MIMO信道相关时表现出严重的性能退化,这与毫米波信道有关,这是由于在毫米波频率下的高方向性传播。模拟波束形成只支持单流传输,不能利用MIMO信道提供的多路复用增益
近年来,波束空间MIMO(B-MIMO)的概念得到了广泛的关注,因为它可以利用毫米波信道的稀疏性来减少射频链的数量。在B-MIMO中,通过在发射机上使用透镜天线阵列,将传统的空间信道转换为波束空间(即角域)。由于毫米波的传播具有很高的方向性,只占较少的方向,因此波束空间信道是稀疏的。由于B-MIMO中的每个波束对应于一个射频链,我们可以通过适当地选择少量波束来减少射频链的数量,而不会对总速率性能造成相当大的损失。
最大幅度光束选择[11]选择在用户处最大化接收功率的光束。然而,它可能导致多个用户选择同一个波束,使得同时活动的射频链的数量取决于信道实现和用户位置。干扰感知波束选择算法[12]通过处理干扰用户之间的多用户干扰,避免了这个问题,并提高了性能。基于信噪比最大化和信噪比最大化准则,提出了一套不同的波束选择算法。
我们提出了一种新的迭代波束选择算法,该算法在总速率性能和功率效率方面优于现有算法。该算法逐束消除了对总和速率贡献最小的光束,并保留了K用户的K(非N K)光束,从而减小了信道的尺寸。为了消除降维系统中的多用户干扰,我们开发了一种简单的对通道进行对角化的预排序,而不是常用的零强制预排序。因此,我们的主要贡献是一个和速率最大化波束选择算法和一个相关的预编码。
5、Joint Design of Beam Selection and Precoding Matrices for mmWave MU-MIMO Systems Relying on Lens Antenna Arrays
基于透镜天线阵的毫米波多输入多输出系统波束选择与预编码矩阵联合设计
Abstract
基于透镜天线阵的无线传输由于透镜能量聚焦能力的限制,越来越受到毫米波多输入多输出(MIMO)系统的青睐。本文考虑了传输功率约束下下行单侧Lensum-MIMO毫米波系统波束选择和预编码矩阵的联合设计,以最大限度地提高系统的和速率。我们首先使用常用的加权最小均方误差(WMMSE)方法将优化问题描述成一个可处理的形式。针对这一问题,提出了一种基于罚对偶分解的高效联合梁选择和预编码设计算法。为了降低设计复杂度,我们还提出了一种将干涉感知波束选择方案与WMMSE方法相结合的简化算法。仿真结果表明,与全数字预编码方案相比,我们提出的算法能够在几次迭代中收敛,并达到接近最优的性能,从而使其优于竞争方法。
Introduction
最近,由于消费者对平板电脑和智能手机等移动设备的快速采用,电信流量经历了巨大的增长,导致厘米波无线频率的频谱严重不足[1]。作为补救措施,毫米波(mmwave)频率的通信有望进入下一代蜂窝网络,使后者能够在30 c300 GHz频段支持前所未有的数据速率[2],[3]。在[4]中,已经证明,在城市环境中,mmwave移动宽带系统可以在最远1公里的距离上实现千兆每秒的数据速率,这表明mmwave通信可用于未来的蜂窝网络,以实现小蜂窝覆盖。根据基本的弗里斯传输定理,在给定的传播距离和天线增益下,毫米波信号比厘米波具有更高的自由空间路径损耗。幸运的是,波长的显著降低使得实现大规模MIMO系统[5]c[7]成为可能,该系统在较小的物理尺寸内使用大量的天线,但通过利用预编码技术实现定向通信的高阵列增益
然而,在大规模MIMO的情况下,传统的全数字预编码技术在射频链和功耗方面会导致难以负担的成本。为了解决这一局限性,人们对各种具有成本意识的毫米波通信技术进行了广泛的研究,例如天线选择[9]c[11]、负载控制寄生天线阵列(LC PAAS)[12]、[13]和混合模拟/数字处理[14]c[17]。天线选择技术仍然需要额外的功率来补偿射频开关的衰减[9],并导致平均信噪比(SNR)降低[11]。lc-paas利用天线之间的相互耦合来减少给定空间自由度所需的射频模块数量。然而,寄生天线的复杂设计阻碍了这种技术的发展。
为了简化混合预编码的设计,许多研究提出了基于离散透镜阵列(DLA)的波束空间MIMO的概念[18]。典型的DLA包括两个主要部件:电磁(EM)透镜和匹配的天线阵列,其元件位于透镜的焦距区域。电磁透镜的基本原理是在透镜光圈的不同点上为电磁射线提供可变的相位偏移,从而实现与角度相关的能量聚焦特性。实际上,这种方法可以将传统的MIMO空间信道转换为具有角度相关能量聚焦能力的波束空间信道[19]。实际上,由于波束空间信道的稀疏性,只需要少量的波束。由于每个波束对应一个单一的射频链,这有效地降低了毫米波大规模MIMO系统中射频链的成本。此外,混合结构中所需的移相器被一个交换网络所取代,从而降低了射频硬件的成本和复杂性,并提高了功率预算。在[20]中,研究了多路径传输条件下的波束空间MIMO,在[21],[22]中考虑了其对多用户场景的扩展。在此背景下,毫米波透镜阵列系统的一个关键问题是有效波束选择和数字预编码方案的设计
DLAS光束选择问题的最新研究[19]、[21]、[23]、[24]集中于选择最大幅度的光束(在续集中称为mm-bs),以便从每个用户获得尽可能多的功率。随后,[25]考虑到潜在的多用户干扰,提出了一种干扰感知波束选择(称为IA-BS)策略,该策略优于mm-BS方案。但是,上述方案都是基于固定的数字预编码方法c,如零强制(ZF)、最小均方误差(MMSE)和最大比值组合(MRC)等c,由于波束选择和预编码模块是分开设计的,因此可能会导致性能下降。
因此,在本研究中,我们考虑了波束选择和预编码矩阵的联合设计,目的是利用有限的射频链最大化下行单侧透镜毫米波多输入多输出系统的和速率。为此,我们首先使用[26]的WMMSE方法将优化问题转化为数学上可处理的形式。然后,为了解决这一问题,我们提出了一种基于创新的PDD方法[27]的高效联合梁选择和预编码设计算法。仿真结果表明,该算法达到了全数字预编码方案的最优性能,优于竞争方法
6、A Novel Two-Stage Beam Selection Algorithm in mmWave Hybrid Beamforming System
毫米波混合波束形成系统中一种新的两级波束选择算法
Abstract
采用数字预编码和模拟波束形成相结合的混合波束形成结构是一种低成本的毫米波大型天线系统解决方案。本文研究了从离散码书中选取模拟波束形成器的和速率最大化问题。为了避免彻底的搜索,提出了一种两阶段方案。首先,推导出和率的下界,并将等效通道的迹逆作为一种新的波束选择度量。基于此度量,我们建立了一个凸问题来导出初始光束集。最后,设计了一种迭代算法来更新波束以进一步提高性能。仿真结果表明,该方案具有接近最优的和速率性能,优于现有方案
Introduction
毫米波(mmwave)与大规模天线阵的结合被认为是未来无线通信系统的一项有前途的技术[1]。传统的全数字波束形成方案要求每个天线都与一个专用的射频链相关联,因此由于硬件成本和功耗巨大,在毫米波频率下是不实用的。提出了一种基于基带数字预编码和射频域模拟波束形成的混合波束形成结构来解决这一问题[2]。由于控制大型天线阵需要较少的射频链,因此可以有效地降低成本和功耗
在设计混合波束形成器时,大多数研究都采用了两阶段的方法,其中模拟波束形成器是根据特定的原理确定的。在此基础上,设计了基于等效信道的数字预编码。由于对数字预编码的研究比较深入,模拟波束形成的设计对数字预编码的性能有很大的影响。
常用的模拟波束形成使能技术包括移相器[3]、[4]、巴特勒矩阵[5]或透镜天线[6]、[7]。为了进一步降低硬件复杂度,一些研究认为模拟波束形成器是从离散码书中选取的。在这种情况下,为了避免穷尽搜索,提出了一定的波束选择准则。例如,在[4]中,选择模拟光束以最大化每个用户所需信号的幅度(mm),但忽略了用户之间的干扰。为了解决这一问题,在[6]中提出了一种干扰感知(IA)方案,该方案为干扰用户重新选择波束。此外,在[7]中还设计了一种基于蚁群优化(ACO)的方案。然而,这两种方案在某种程度上都是基于幅度最大化准则,而不是直接优化和率。同时,这些方法要求射频链和用户具有相同的数目。与上述方案不同,参考文献[5]根据和速率分析选择波束,但该方法仅用于具有特定概率分布的信道,只关注遍历速率,而不是瞬时速率
在这封信中,我们还考虑到模拟光束是从一个离散的码书中选择的。为了解决上述问题,我们提出了一种新的两级波束选择算法。首先,导出了一个简洁的度量来度量光束集的质量,使我们能够建立一个凸问题来确定一个初始的、高质量的光束集。在此初始解的基础上,设计了一种迭代更新算法,以获得更好的光束集。仿真结果表明,该方案只需要少量迭代,且能很好地逼近最优解。同时,该方案允许比用户更多的射频链,在实践中提供了高度的灵活性。
7、Data-Driven-Based Analog Beam Selection for Hybrid Beamforming Under mm-Wave Channels
基于数据驱动的毫米波混合波束形成模拟波束选择
Abstract
对于大型多输入多输出系统,混合波束形成是一种有前途的低成本解决方案,其中基站的射频链较少。在这些系统中,模拟波束形成码字的选择对于优化上行链路和速率至关重要。本文在机器学习的基础上,提出了一种模拟光束选择的数据驱动方法,实现了一种高度依赖于训练数据、低复杂度的近似最优和速率。具体来说,我们将波束选择问题作为一个多类分类问题,其中训练数据集由大量毫米波信道样本组成。利用这些训练数据,利用支持向量机算法,得到了一个统计分类模型,使和率最大化。对于实时传输,利用导出的分类模型,我们可以在低复杂度的情况下,选择每个用户的最佳模拟光束。本文还提出了一种通过麦克劳林展开确定高斯核函数最优参数的新方法。分析和仿真结果表明,只要训练数据足够,所提出的数据驱动方法就可以获得接近最优的和速率性能,而与传统方法相比,其复杂度降低了几个数量级。
Introduction
尽管第五代(5G)移动通信标准仍在不断发展,但更高的数据速率、更低的延迟和更高的节能性能的目标是明确的[1]。这些目标带来了对更宽带宽频谱的需求。目前,频谱中6 GHz以上的可用带宽不足以满足这些要求。这一不足反过来又帮助我们将目标工作频段提升到毫米波(mm波)范围,以用于下一代无线通信系统[3]、[4]。这些高频段的较短波长使得在超小空间[5],[6]内,每个系统可以实现更多的天线元件。然而,它也增加了与在这些频率下工作相关的信号路径和传播挑战。例如,由于气体吸收,60 GHz波形的衰减超过10 dB/km,而700 MHz波形的衰减约为0.01 dB/km
这些损耗可以通过精心的阵列设计和空间信号处理技术(包括波束形成)的应用来补偿。波束形成可由大型天线阵列实现,可直接应用于提供更高的发射增益,以应对路径损耗和有害干扰信号。
为了实现天线阵设计中波束形成的良好灵活性和可控性,对每个天线阵元采用独立的加权控制是一种可行的方法。这需要一个专用于每个天线阵列元件的发射或接收组件。然而,对于阵列大小超过100根天线的大型多输入多输出(MIMO)系统[7]、[8],由于成本、空间和功率的限制,很难构建这样的体系结构。例如,为每个通道实现高性能的模拟数字转换器(ADC)和数模转换器(DAC),可以将成本和功率推到经济实惠的预算之外。同样,在每个信道的射频(RF)链中使用可变增益放大器可以增加系统成本。
混合波束形成是一种常用的将波束形成划分为数字域和射频域的技术。因此,可以实现混合波束形成以平衡成本和灵活性之间的权衡,同时仍然部署满足所需性能参数的系统。混合波束形成设计是将多个阵列单元组合成子阵列模块来实现的,其中ATransmit或接收模块可以专用于阵列中的多个单元。因此,系统需要较少的发射或接收组件(即射频链)。可以选择每个子阵列中的元素数量,以确保在转向角范围内满足系统性能。以传输路径为例,子阵中的每个单元可以直接在射频域中应用相移,而基于复加权矢量的数字波束形成技术可以应用于每个子阵的信号。数字波束形成能够在子阵级对信号进行幅度和相位的控制。因此,提出了一种低成本部署的低成本MIMO系统结构,称为混合MIMO。
在混合波束形成中,每个射频链上都装有一组移相器进行模拟波束形成。因此,为保证混合多输入多输出(MIMO)在和率或误码率方面的高性能,对每个射频链选择合适的模拟波束起着关键作用。因此,近年来,大量的工作集中在模拟光束的选择上。在[12]中,提出了一种点对点方案下的低复杂度模拟光束选择方案。当模拟光束的候选数目较少时,该方案能够在高信噪比情况下获得近似最优的光谱效率。文献[13]提出了两种基于Rotman透镜理论的模拟波束形成的波束选择算法,能够获得更高的性能。在[14]中,提出了一种详尽的方法来选择使信噪比或信噪比最大的模拟光束。然而,到目前为止,所有相关工作都试图通过评估所有可能组合的设计指标来找到模拟光束的最佳组合。然而,评估设计指标是一项高度复杂的任务,因此为每个射频链选择合适的模拟波束是一个高度复杂的成本程序,这对实时通信造成了不可接受的延迟。因此,开发一种低复杂度的方法是有动机的。
近年来,大数据]作为一种从海量数据中提取有意义价值的新兴技术,引起了各领域的广泛关注。大数据使我们能够利用数据的容量、多样性和速度,并从数据中推断出可操作的洞察力。在蜂窝网络研究中,由于大数据能够为蜂窝网络的设计或优化提供新的高效解决方案,大数据将给我们带来巨大的创新机会。例如,包含大数据的蜂窝网络已在[17]中进行了研究。[18]提出了一种基于大数据的自优化5G网络。此外,如[17]和[18]所述,机器学习[19]是大数据中的一个强大工具,它能够从培训数据中挖掘隐藏的见解,并对新的数据集做出判断。