敬体形与简体形

动词的简体与敬体形式

敬体形简体形敬体形简体形
现在肯定買います買う (基本形)ありますある(基本形)
现在否定買いまさん買わない(ない)ありませんない
过去肯定買いました買った(た)ありましたあった
过去否定買いませんでした買わなかった(なかった)ありませんでしたなかった)

形容词

形1(去掉でした/です)

敬体形简体形
忙しいです忙しい
忙しかったです忙しかった
忙しくないです /ありまさん忙しくない
忙しくなかったです/ありまさんでした忙しくなかった

形2/名词

敬体形简体形敬体形简体形
现在肯定簡単です簡単だ晴れです晴れだ
现在否定簡単ではありまさん簡単ではない晴れではありまさん晴れではない
过去肯定簡単でした簡単だった晴れでした晴れだった
过去否定簡単ではありまさんでした簡単ではなかった晴れではありまさんでした晴れではなかった
### 四面体剖分单元函数的计算方法 在有限元分析中,四面体单元是一种常用的三维单元式。为了描述这些单元内部场变量的变化规律,通常引入函数的概念来插值节点上的已知物理量。 #### 函数的一般概念 函数用于表示任意位置处未知场变量相对于节点上已知值之间的关系。对于一个标准的线性四面体单元来说,假设四个顶点分别为\(P_1\)、\(P_2\)、\(P_3\) 和 \(P_4\),则可以定义一组一次多项式的函数\[N_i(\xi,\eta,\zeta)\]满足: 当坐标位于第\(i\)个节点时,对应的函数等于1;而在其他三个节点处,则该函数应为0。即: \[ N_i(P_j)=\delta_{ij}, \quad i,j=1,2,3,4 \] 其中\(\delta_{ij}\)代表克罗内克δ符号[^1]。 #### 坐标变换自然坐标的建立 考虑到实际工程中的几何状往往复杂多变,因此一般先将实体模型映射到标准化的空间——通常是单位立方体内或简单几何图如正方体/球体等——然后再在此基础上构建相应的数学模型。对于四面体而言,常用的方法是将其转换至由局部参数\((\xi,\eta,\zeta)\in[-1,+1]^3\)构成的标准空间中去。此时每个顶点对应着不同的组合方式下的极值点(-1,-1,-1), (+1,-1,-1), (-1,+1,-1), (-1,-1,+1)[^2]。 然而更常见的是采用重心坐标系(Barycentric Coordinates),它使得整个过程更加直观易懂。设某一点Q处于以A,B,C,D为顶点组成的四面体内,则可唯一确定一组实数\(\alpha,\beta,\gamma,\delta (\geqslant 0)\),使下面的关系成立: \[ Q=\alpha A+\beta B +\gamma C+ \delta D \\ \text{with } \sum^n_{m=1}{w_m}=1 \] 这里权重系数wi实际上就是我们要找寻的目标—函数Ni(xi,yi,zi)的具体表现式之一[^3]。 #### 函数的具体表达式推导 根据上述原则,可以直接给出四面体型函
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值