### 四面体剖分单元形函数的计算方法
在有限元分析中,四面体单元是一种常用的三维单元形式。为了描述这些单元内部场变量的变化规律,通常引入形函数的概念来插值节点上的已知物理量。
#### 形函数的一般概念
形函数用于表示任意位置处未知场变量相对于节点上已知值之间的关系。对于一个标准的线性四面体单元来说,假设四个顶点分别为\(P_1\)、\(P_2\)、\(P_3\) 和 \(P_4\),则可以定义一组一次多项式的形函数\[N_i(\xi,\eta,\zeta)\]满足:
当坐标位于第\(i\)个节点时,对应的形函数等于1;而在其他三个节点处,则该形函数应为0。即:
\[ N_i(P_j)=\delta_{ij}, \quad i,j=1,2,3,4 \]
其中\(\delta_{ij}\)代表克罗内克δ符号[^1]。
#### 坐标变换与自然坐标的建立
考虑到实际工程中的几何形状往往复杂多变,因此一般先将实体模型映射到标准化的空间——通常是单位立方体内或简单几何图形如正方体/球体等——然后再在此基础上构建相应的数学模型。对于四面体而言,常用的方法是将其转换至由局部参数\((\xi,\eta,\zeta)\in[-1,+1]^3\)构成的标准空间中去。此时每个顶点对应着不同的组合方式下的极值点(-1,-1,-1), (+1,-1,-1), (-1,+1,-1), (-1,-1,+1)[^2]。
然而更常见的是采用重心坐标系(Barycentric Coordinates),它使得整个过程更加直观易懂。设某一点Q处于以A,B,C,D为顶点组成的四面体内,则可唯一确定一组实数\(\alpha,\beta,\gamma,\delta (\geqslant 0)\),使下面的关系成立:
\[ Q=\alpha A+\beta B +\gamma C+ \delta D \\ \text{with } \sum^n_{m=1}{w_m}=1 \]
这里权重系数wi实际上就是我们要找寻的目标—形函数Ni(xi,yi,zi)的具体表现形式之一[^3]。
#### 形函数的具体表达式推导
根据上述原则,可以直接给出四面体型函