Tensorflow 入门手册(代码与原理释义)

 

 

·人工智能与深度学习

      -人工智能={机器学习,........else}

      -机器学习={深度学习(表示学习),........else}

·神经网络

·卷积神经网络(Convolutional Neural Networks)CNN

     -包含卷积层的神经网络、擅长处理图像

     -常见网络 LeNet 、 AlexNet 、 VGG16 、 GoogleNet 、 ResNet

·循环神经网络(Recurrent Neural Network)RNN

     -为处理时序数据而设计的,例如一段文字或语音

     -常见网络:长短期记忆(long short-term menory,LSTM)

tensorflow 的一些常用代码理解

 

Convolution - 卷积层

Average pooling  平均池化 (也可以最大值池化)

full connection 全连接层

 

 

核心步骤一——卷积

核心步骤二——池化(下采样)

 

核心步骤三——激活函数

 

七层模型:

1、第一层卷积层

·卷积后的大小   32-5+1=28

2、第二层池化层

3、第三层二次卷积

4、第四次二次池化

5、第五层全连接卷积层

 

6、第六层全连接层

7、第七层全连接层(输出层)

tensorflow模型类:model类使用例程网站 

 

·如何实例化一个模型 

model.summary() #模型展示

 

 tensorflow模型类:sequencial类使用例程网站 

lenet第一层:tensorflow的卷积类

lenet第二层:tensorflow池化类

 

padding的两种方法,valid代表去除多余的列,same代表补齐

 

lenet第三层和第四层:tensorflow卷积+池化层编码

 

 lenet转化层:连接前面四层与后面全连接层的扁平化类

 

 lenet第五层:全连接类

 

lenet第五六七层编码:

-这里最后一层使用softmax归一化函数

 lenet各层编码:

 lenet模型的训练设置

超参数设置

epoch:训练轮数

batch_size:批大小

learning_rate:学习率

深度学习中,主要调整以上参数

 

优化器:优化算法

adam_optimizer = tf.keras.optimizers.Adam(learning_rate)

 

编译模型 

model.compile(optimizer=adam_optimizer,       loss=tf.keras.losses.sparse_categorical_crossentropy,       metrics=['accuracy'])

 

训练模型

x, # 训练数据

y, # 训练数据的标签

batch_size,  # 批大小

epochs # 训练遍数(轮数)

根据参数开始训练:model.fit(x=x_train, y=y_train, batch_size=batch_size,     epochs=num_epochs) 

 

保存模型

filepath, # 保存路径
from google.colab import drive drive.mount('/gdrive') #使用colab时的保存代码

model.save('/gdrive/My Drive/AI/model/lenet_model.h5')

 

加载模型

预测时需要加载保存好的模型

 filepath, # 模型路径
model = tf.keras.models.load_model('/gdrive/My Drive/AI/model/lenet_model.h5')

 

预测模型 

 x, # 输入数据
pred = model.predict(x_test[image_index].reshape(1, 32, 32, 1)) #将测试集以四维结构输入,得到0-9的概率

print(pred.argmax())#打印最大概率的对应数字

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值