Day27(回溯)|39. 组合总和 40. 组合总和 II 131. 分割回文串

文章介绍了如何使用回溯法解决组合问题,包括39.组合总和和40.组合总和II,这两个问题涉及在给定数字集合中找到所有可能的组合,使得组合的和等于目标值。此外,还讨论了131.分割回文串问题,即找出字符串的所有回文子串分割方式。解题过程中强调了排序、剪枝和回溯等关键步骤。
摘要由CSDN通过智能技术生成

39. 组合总和

  • 题目链接39. 组合总和
  • 解题思路&主要难点:本题和之前几个组合问题不一样的地方有两个,一个是组合中的元素可以重复使用,另一个是每次输出结果的长度不固定。其他思路还是一样,建立树结构,每次从整个序列中进行选取,加入后比较当前总和是否与target相同,若相同则返回,小于则继续从整个序列中选取,大于则回溯。
  • 解题时间:20+5
  • 代码
class Solution {
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        List<List<Integer>> res=new ArrayList<>();//存放最终结果
        Arrays.sort(candidates);//排序,每次往里放的时候从小到大去尝试
        back(res,new ArrayList<>(),candidates,target,0,0);
        return res;
    }

    public void back(List<List<Integer>> res,List<Integer> path,int[] candidates,int target,int sum, int idx){
        if(sum==target){
            //找到了,加入结果集
            res.add(new ArrayList<>(path));
            return;
        }
        for(int i=idx;i<candidates.length;i++){
            if(sum+candidates[i]>target){
                //剪枝操作:如果当前位置加上已经超出target了,后面就不用再继续for循环了
                break;
            }
            path.add(candidates[i]);
            back(res,path,candidates,target,sum+candidates[i],i);
            path.remove(path.size()-1);//回溯
        }
    }
}

40. 组合总和 II

  • 题目链接40. 组合总和 II
  • 解题思路:和上面题目要求基本一样,加了一条限制要求每次候选集合中的元素不能重复,但是候选集里是有可能有重复元素的
  • 主要难点:去重比较难理解(二刷需要重新看)
  • 解题时间:30+5
  • 代码
class Solution {
  LinkedList<Integer> path = new LinkedList<>();
  List<List<Integer>> ans = new ArrayList<>();
  boolean[] used;
  int sum = 0;

  public List<List<Integer>> combinationSum2(int[] candidates, int target) {
    used = new boolean[candidates.length];
    // 加标志数组,用来辅助判断同层节点是否已经遍历
    Arrays.fill(used, false);
    // 为了将重复的数字都放到一起,所以先进行排序
    Arrays.sort(candidates);
    backTracking(candidates, target, 0);
    return ans;
  }

  private void backTracking(int[] candidates, int target, int startIndex) {
    if (sum == target) {
      ans.add(new ArrayList(path));
    }
    for (int i = startIndex; i < candidates.length; i++) {
      if (sum + candidates[i] > target) {
        break;
      }
      // 出现重复节点,同层的第一个节点已经被访问过,所以直接跳过
      if (i > 0 && candidates[i] == candidates[i - 1] && !used[i - 1]) {
        continue;
      }
      used[i] = true;
      sum += candidates[i];
      path.add(candidates[i]);
      // 每个节点仅能选择一次,所以从下一位开始
      backTracking(candidates, target, i + 1);
      used[i] = false;
      sum -= candidates[i];
      path.removeLast();
    }
  }
}

131. 分割回文串

  • 题目链接131. 分割回文串
  • 解题思路:切割问题和组合问题其实差不多,一个是从剩下的序列里选一部分切除,一个是从集合中选一个组合,也可以抽象成树结构。
  • 主要难点:切割问题抽象成树形结构
  • 解题时间:20+5
  • 代码
class Solution {
    List<List<String>> lists = new ArrayList<>();
    Deque<String> deque = new LinkedList<>();

    public List<List<String>> partition(String s) {
        backTracking(s, 0);
        return lists;
    }

    private void backTracking(String s, int startIndex) {
        //如果起始位置大于s的大小,说明找到了一组分割方案
        if (startIndex >= s.length()) {
            lists.add(new ArrayList(deque));
            return;
        }
        for (int i = startIndex; i < s.length(); i++) {
            //如果是回文子串,则记录
            if (isPalindrome(s, startIndex, i)) {
                String str = s.substring(startIndex, i + 1);
                deque.addLast(str);
            } else {
                continue;
            }
            //起始位置后移,保证不重复
            backTracking(s, i + 1);
            deque.removeLast();
        }
    }
    //判断是否是回文串
    private boolean isPalindrome(String s, int startIndex, int end) {
        for (int i = startIndex, j = end; i < j; i++, j--) {
            if (s.charAt(i) != s.charAt(j)) {
                return false;
            }
        }
        return true;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值