491. 递增子序列
- 题目链接:491. 递增子序列
- 解题思路:可以理解为子集+去重问题,和前面题不一样的是本题不能排序,因为要找递增子序列,去重逻辑也要重新编写。因为元素不能重复使用,所以需要一个startIndex来确定起始位置
- 解题时间:25+10
- 代码:
class Solution {
private List<List<Integer>> res=new ArrayList<>();
private List<Integer> path=new ArrayList<>();
public List<List<Integer>> findSubsequences(int[] nums) {
back(nums,0);
return res;
}
private void back(int[] nums,int startIndex){
if(path.size()>1){
res.add(new ArrayList<>(path));
}
int[] used=new int[201];
for(int i=startIndex;i<nums.length;i++){
if(!path.isEmpty()&&nums[i]<path.get(path.size()-1)||(used[nums[i]+100]==1)){
continue;
}
used[nums[i]+100]=1;
path.add(nums[i]);
back(nums,i+1);
path.remove(path.size()-1);
}
}
}
46. 全排列
- 题目链接:46. 全排列
- 解题思路:本题是无重复数字的全排列问题,每个全排列的长度都应该是总长度,所以不是切割或子集问题,是一种排列问题,需要维护一个used数组来标记原集合中哪些位置的元素已经被用过,构建树形结构来找全排列,树应该是一个完全二叉树的样子,最后结果应该是叶子节点的值
- 主要难点:与切割和子集不同,因为本题每次都是从0开始搜索,所以不需要维护startIndex,只需要一个used数组即可
- 解题时间:20+5
- 代码:
class Solution {
List<List<Integer>> res = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
boolean[] used;
public List<List<Integer>> permute(int[] nums) {
if(nums.length==0){
return res;
}
used=new boolean[nums.length];
back(nums);
return res;
}
private void back(int[] nums){
if(path.size()==nums.length){
res.add(new ArrayList<>(path));
return;
}
for(int i=0;i<nums.length;i++){
if(used[i]){
continue;
}
used[i]=true;
path.add(nums[i]);
back(nums);
path.removeLast();
used[i]=false;
}
}
}
47. 全排列 II(二刷重点看)
- 题目链接:47. 全排列 II
- 解题思路:相比上一题加入了去重,要求在一个可重复的序列中找到不重复的全排列,去重应该先排个序
- 主要难点:同一树枝上可以重复选取,同树层之间不能重复选取
- 解题时间:20+5
- 代码:
class Solution {
List<List<Integer>> result = new ArrayList<>();
List<Integer> path = new ArrayList<>();
public List<List<Integer>> permuteUnique(int[] nums) {
boolean[] used = new boolean[nums.length];
Arrays.fill(used, false);
Arrays.sort(nums);
backTrack(nums, used);
return result;
}
private void backTrack(int[] nums, boolean[] used) {
if (path.size() == nums.length) {
result.add(new ArrayList<>(path));
return;
}
for (int i = 0; i < nums.length; i++) {
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
continue;
}
if (used[i] == false) {
used[i] = true;
path.add(nums[i]);
backTrack(nums, used);
path.remove(path.size() - 1);
used[i] = false;
}
}
}
}