import torch
b = torch.randn(2,3)
a = torch.randn(2,3)
a = torch.randn(3)
print(a)
print(b)
c=torch.abs(b)#绝对值
d=torch.add(a,b)#求和
e=torch.clamp(b,-0.1,0.1)#对B进行裁减,超过0.1的为0.1,小于-0.1的为-0.1
f=torch.div(a,b)#求商
g=torch.mul(a,b)#求积
h=torch.pow(b,10)#求幂
j=torch.mm(a,b)#矩阵求积
k=torch.mv(a,b)#a为矩阵b为向量
print(f)
import torch #导入包
#下面定义四个整形变量
batch_n=100 #一个批次中输入数据的数量
hidden_layer=100 #定义经过隐藏层后保留的数据特征的个数
input_data=1000 #每个数据包含的数据特征个数
output_data=10 #输出数据,分类结果值
#通过randn()随机生成的浮点数,取值满足均值为0,方差为1的正太分布。
x = torch.randn(batch_n,input_data) #输入层参数(100,1000)
y = torch.randn(batch_n,output_data) #输出层参数(100,10)
w1 = torch.randn(input_data,hidden_layer) #输入到隐藏权重参数维度(1000,100)
w2 = torch.randn(hidden_layer,output_data) #隐藏到输出权重参数维度(100,10)
epoch_n=20 #定义训练次数
learning_rate=1e-6 #定义学习率
#开始训练
for epoch in range(epoch_n):
h1 = x.mm(w1) #torch.mm(a, b)是矩阵a和b矩阵相乘,(100,1000)x(1000,100)
h1 = h1.clamp(min =0) #对h1边界裁剪,最小为0,(Relu激活函数)
y_pred = h1.mm(w2) #(100,100)x(100,10)=(10,100)
#y_pred是前向传播得到的预测结果。
loss=(y_pred-y).pow(2).sum() #均方误差公式为损失函数
print("Epoch{},Loss:{:.4f}".format(epoch,loss))
#下面是后向传播,通过链式求导得出每个参数对应的梯度。
#梯度是一个方向,而不是一个值。
#该点的梯度就表示从该点出发,函数值增长最为迅猛的方向。
#导数,就是用来分析函数“变化率”的一种度量
#偏导数为函数在每个位置处沿着自变量坐标轴方向上的导数(切线斜率)。
#方向导数的本质是一个数值,简单来说其定义为:一个函数沿指定方向的变化率。
grad_y_pred = 2*(y_pred-y)
grad_w2 = h1.t().mm(grad_y_pred) #t()是转置,对w2求偏导=2[yp-y]w1x
grad_h = grad_y_pred.clone()
grad_h = grad_h.mm(w2.t())
grad_h.clamp_(min=0)
grad_w1 = x.t().mm(grad_h) #对w1求偏导
w1 -= learning_rate*grad_w1
w2 -= learning_rate*grad_w2
下面是自动梯度的代码
import torch #导入包
from torch.autograd import Variable
#下面定义四个整形变量
batch_n =100 #一个批次中输入数据的数量
hidden_layer=100 #定义经过隐藏层后保留的数据特征的个数
input_data =1000 #每个数据包含的数据特征个数
output_data =10 #输出数据,分类结果值
#通过randn()随机生成的浮点数,取值满足均值为0,方差为1的正太分布。
#用Variable类对Tensor数据类型变量进行封装操作。
#为false该变量在自动梯度计算过程中不保留梯度值。
x = Variable(torch.randn(batch_n,input_data ) , requires_grad=False)
y = Variable(torch.randn(batch_n,output_data ) , requires_grad=False)
w1 = Variable(torch.randn(input_data,hidden_layer ) , requires_grad=True )
w2 = Variable(torch.randn(hidden_layer,output_data) , requires_grad=True )
epoch_n=20 #定义训练次数
learning_rate=1e-6 #定义学习率
#开始训练
for epoch in range(epoch_n):
y_pred = x.mm(w1).clamp(min=0).mm(w2)
loss = (y_pred-y).pow(2).sum() #均方误差公式为损失函数
print("Epoch:{},Loss:{:.4f}".format(epoch,loss))
loss.backward() #自动计算每个节点的梯度值
w1.data -=learning_rate*w1.grad.data
w2.data -=learning_rate*w2.grad.data #访问梯度数据:X.grad.data
w1.grad.data.zero_() #梯度值置零
w2.grad.data.zero_()
自定义传播函数
import torch #导入包
from torch.autograd import Variable
#下面定义四个整形变量
batch_n =100 #一个批次中输入数据的数量
hidden_layer=100 #定义经过隐藏层后保留的数据特征的个数
input_data =1000 #每个数据包含的数据特征个数
output_data =10 #输出数据,分类结果值
#通过randn()随机生成的浮点数,取值满足均值为0,方差为1的正太分布。
#用Variable类对Tensor数据类型变量进行封装操作。
#为false该变量在自动梯度计算过程中不保留梯度值。
class Model(torch.nn.Module): #构建类,继承了Torch.nn.module
def __init__(self): #类的初始化,当创建这个类的实例时就会调用该方法;
super(Model,self).__init__() #self 在定义类的方法时是必须有的,虽然在调用时不必传入相应的参数;
#self代表类的实例,表示当前对象的地址 self.__class__ 则指向类
def forward(self,input,w1,w2): #实现了前向传播的矩阵运算
x=torch.mm(input,w1)
x=torch.clamp(x,min=0)
x=torch.mm(x,w2)
return x
def backward(self): #实现了后向传播的自动梯度计算。
pass
model=Model() #调用这个类
#下面是模型训练和参数优化
x = Variable(torch.randn(batch_n,input_data ) , requires_grad=False)
y = Variable(torch.randn(batch_n,output_data ) , requires_grad=False)
w1 = Variable(torch.randn(input_data,hidden_layer ) , requires_grad=True )
w2 = Variable(torch.randn(hidden_layer,output_data) , requires_grad=True )
epoch_n=20 #定义训练次数
learning_rate=1e-6 #定义学习率
#开始训练
for epoch in range(epoch_n):
y_pred = model(x,w1,w2)
loss = (y_pred-y).pow(2).sum() #均方误差公式为损失函数
print("Epoch:{},Loss:{:.4f}".format(epoch,loss))
loss.backward() #自动计算每个节点的梯度值
w1.data -=learning_rate*w1.grad.data #访问梯度数据:X.grad.data
w2.data -=learning_rate*w2.grad.data #X.data代表Tensor数据类型的变量
w1.grad.data.zero_() #梯度值置零
w2.grad.data.zero_()