点的节点
相关的节点:
点的概念
坐标系的种类很多,常用的坐标系有:笛卡尔直角坐标系、平面极坐标系、柱面坐标系(或称柱坐标系)和球面坐标系(或称球坐标系)等。
Dynamo 的节点支持笛卡尔直角坐标系、柱面坐标系(或称柱坐标系)和球面坐标系(或称球坐标系),还有UV坐标。
百度百科:
但是一个问题是如何把这个二维的平面贴到三维的NURBS表面和多边形表面呢?对于NURBUS表面。由于他本身具有UV参数,尽管这个UV值是用来定位表面上的点的参数,但由于它也是二维的,所以很容易通过换算把表面上的点和平面图象上的象素对应起来。所以把图象贴带NURBS表面上是很直接的一件事。但是对于多边形模型来讲,贴图就变成一件麻烦的事了。所以多边形为了贴图就额外引进了一个UV坐标,以便把多边形的顶点和图象文件上的象素对应起来,这样才能在多边形表面上定位纹理贴图。所以说多边形的顶点除了具有三维的空间坐标外。还具有二维的UV坐标。对于纹理贴图而言,一张贴图的U和V坐标的数值范围都是0到1,而不管他的实际分辨率是多少,MAYA会自动把UV纹理坐标换算成贴图的象素坐标。
"UV"这里是指u,v纹理贴图坐标的简称(它和空间模型的X, Y, Z轴是类似的). 它定义了图片上每个点的位置的信息. 这些点与3D模型是相互联系的, 以决定表面纹理贴图的位置. UV就是将图像上每一个点精确对应到模型物体的表面. 在点与点之间的间隙位置由软件进行图像光滑插值处理. 这就是所谓的UV贴图. 那为什么用UV坐标而不是标准的投影坐标呢? 通常给物体纹理贴图最标准的方法就是以planar(平面),cylindrical(圆柱), spherical(球形),cubic(方盒)坐标方式投影贴图. Planar projection(平面投影方式)是将图像沿x,y或z轴直接投影到物体. 这种方法使用于纸张, 布告, 书的封面等 - 也就是表面平整的物体.平面投影的缺点是如果表面不平整, 或者物体边缘弯曲, 就会产生如图A的不理想接缝和变形. 避免这种情况需要创建带有alpha通道的图像, 来掩盖临近的平面投影接缝, 而这会是非常烦琐的工作. 所以不要对有较大厚度的物体和不平整的表面运用平面投影方式. 对于立方体可以在x, y方向分别进行平面投影, 但是要注意边缘接缝的融合. 或者采用无缝连续的纹理, 并使用cubic投影方式. 多数软件有图片自动缩放功能, 使图像与表面吻合. 显然, 如果你的图像与表面形状不同, 自动缩放就会改变图像的比例以吻合表面. 这通常会产生不理想的效果, 所以制作贴图前先测量你的物体尺寸.
图1,笛卡尔直角坐标系表示的点;图2,一条空间曲线上的点,图3,一个空间曲面上的点。
点的创建
笛卡尔直角坐标系和空间曲面上的点已经在上面看到了,下面看看柱面坐标系(或称柱坐标系)和球面坐标系(或称球坐标系)。
点的操作
加:Point.Add
,Point + Vector。
减: Point.Subtract
,Point - Vector。
去除距离低于阈值的点:Point.PruneDuplicates
,如果认为距离太近,没有必要保留,可以用这个节点去掉。
投影:Point.Project
,实际上就是射线求交。
点和点之间的距离
点和点之间的距离就是从这个点出发,到另外一个点的向量。
向量 Vector
向量对于坐标转换至关重要。向量的作用:
- 对坐标系的表达
XAxis, YAxis, ZAxis
- 点乘和叉乘
Cross, Dot
- 对角度的判断(包括是否平行等)
AngleAboutAxis, AngelWithVector, IsParallel
- 旋转和缩放
Rotate, Reverse, Scale
- 位移
Transform