AlphaGo 家族:从「偷看棋谱」到「自创宇宙套路」的 1008 天

在这里插入图片描述

AlphaGo 家族

AlphaGo 是「偷看人类棋谱 + 自虐练棋」的初代棋神,2016 年掀翻李世石;AlphaGo Zero 更狠,撕掉人类教材,纯靠左右手互搏(每天 490 万盘),3 天虐哭前辈;AlphaZero 则是「规则通吃的野生天才」,给本说明书(如围棋 / 国际象棋规则)就能从零自学,24 小时内血洗各领域冠军 AI—— 三代进化,从「站在人类肩膀」到「自造天梯登顶」,最终证明:只要有规则,AI 自己就能玩出宇宙级套路。

AlphaGo

(拍大腿)来!咱用「学围棋的小明」打比方,秒懂AlphaGo怎么逆袭成棋神!

🌟 第一步:偷看人类高手小抄(监督学习)

AlphaGo刚学棋时,像个蹲在棋馆的偷看王——把人类20万盘职业棋谱全记下来(相当于背下所有《围棋入门定式》)。比如看到柯洁在某个局面下「小飞挂角」,它就偷偷记:「哦!这种棋盘长这样时,人类觉得这里落子最合理!」
👉 策略网络:就是它背的「人类落子概率字典」,看到棋盘立刻算出「这步棋人类选A的概率60%,选B30%…」

🔥 第二步:自己跟自己打架(强化学习)

光背定式不够!AlphaGo开始自己跟自己下棋(每天下几万盘),每盘结束都复盘:「刚才这步选A赢了,以后A的胜率加10%;选B输了,B的胜率砍半!」
👉 价值网络:进化成「胜负预言家」,看到棋盘直接估摸「现在我有70%赢面」,像给每个局面打分。

🧠 第三步:脑补未来100步(蒙特卡罗树搜索)

真正下棋时,它开启「脑补模式」:

  1. 选路径:从当前棋盘出发,用策略网络选几个人类常走的位置(比如A/B/C);
  2. 试错推演:在每个位置上,用价值网络快速模拟1000局(比如A下去后,假设对手乱下,我赢了800次);
  3. 反向优化:给每个路径贴标签「A=80%胜率,B=50%」,最终选「胜率最高+人类常走」的折中方案落子。
    (像你打游戏时,用存档试遍所有分支,选最稳的通关路线)

🎯 终极变身:人类套路+AI推演的混血怪

  • 前期靠人类棋谱「打底裤」,避免从零瞎摸索;
  • 后期靠自我对弈「疯狂刷题」,找到人类没试过的妙手;
  • 最后用树搜索「开上帝视角」,把每一步胜率算到小数点后。

😱 名场面:李世石的「神之一手」被预判

2016年对战李世石时,AlphaGo在第37手走出人类从未想过的「肩冲」,其实是它通过2000万次模拟发现:「这步棋短期亏目,但长期胜率高15%!」气得李棋圣拍桌子:「这绝对不是人类能下出来的棋!」

🌰 人话总结

AlphaGo就像:

  1. 先背熟所有围棋教材(人类棋谱);
  2. 每天和自己打1000盘,边打边骂「这步真蠢」;
  3. 下棋时在脑子里预演1000种结局,选最稳的一步;
  4. 最后变成「会背教材的预言家」,连人类冠军都猜不透它的下一步。

(对比后来的AlphaGo Zero:这货更狠,连教材都不看,自己从0开始瞎打,3天就把AlphaGo虐哭了🤯)

—— 所以啊,AlphaGo的厉害,是「站在人类肩膀上,用AI的算力把套路玩出花」的典型! 🏯💻

AlphaGo Zero

来,用唠嗑的方式讲讲AlphaGo Zero有多“叛逆”——它连人类棋谱都不屑看,自己从零摸索成了围棋天花板!

🌟 核心叛逆点:扔掉人类经验,纯靠“自虐”升级

普通AlphaGo还得先学人类棋谱,Zero倒好,直接把棋盘规则输入,然后自己跟自己下棋(每天490万盘!)。赢了就记“这步妙”,输了就改“这步蠢”,像打游戏刷副本一样,越挫越勇。

🧠 两个“聪明脑袋”合二为一

它只有一个神经网络,却干两件事:

  1. 落子预测(策略):看棋盘当下的样子,算出每个位置落子的概率(比如“这里50%胜率,那里30%”)。
  2. 局面打分(价值):预判当前局面最终赢的概率(比如“现在这棋,我有70%赢面”)。
    (老版本是两个网络,Zero直接合体,更精简暴力!)

🔍 蒙特卡洛树搜索:疯狂推演未来

每下一步前,它在脑子里“快进” thousands 种走法:

  • 从当前局面出发,模拟各种对弈路径,用神经网络评估每一步的好坏。
  • 比如:“如果我下这里,对手可能下那里,然后我再这么走…最后赢了!”
  • 反复推演后,选“被验证最多的赢法”落子,像开了上帝视角。

🔄 训练循环:自己虐自己,越虐越强

  1. 第一阶段:用随机乱下的神经网络,结合树搜索,生成一堆对弈数据(每一步的棋盘、落子、胜负)。
  2. 第二阶段:用这些数据“回炉”训练神经网络,让它学会“哪些走法更容易赢”。
  3. 第三阶段:用新网络再战,淘汰旧版本——像打擂台,赢的活下来,输的被吃掉。
    (3天就虐哭击败李世石的AlphaGo Lee,40天登顶全球第一!)

🤯 离谱成就:比人类更懂围棋

  • 3天:100:0碾压前辈AlphaGo Lee(李世石的手下败将)。
  • 40天:自创的“新手村”走法,碾压人类千年总结的定式(比如36手天元局,人类想都不敢想)。
  • 更绝的是:它证明人类千年经验只是“局部最优”,而它找到了更广阔的“宇宙最优解”。

🌰 人话总结

Zero就像一个自闭天才:

  1. 不学任何人的套路,自己瞎琢磨(自我对弈)。
  2. 每一步都在脑子里疯狂推演(树搜索),错了就改。
  3. 越练越妖,最后下出人类看不懂但确实能赢的棋。
    (柯洁看了都说:“我们学的可能都是皮毛…”)

这货的意义,不止赢围棋——它证明AI可以抛开人类经验,纯靠“规则+试错”,在复杂系统里走出自己的路。下次你玩游戏卡关时,想想Zero,说不定它也在某个虚拟世界,自己跟自己较劲呢~ 😎

AlphaZero

(翘着二郎腿唠)来!AlphaZero这货,简直是AI界的「野生天才」——给它一套游戏规则,它能从零自学成全球冠军,连游戏类型都不挑!围棋、国际象棋、将棋通吃,主打一个「无师自通」的叛逆感~

🌟 出生设定:一张白纸闯江湖

不像AlphaGo还要偷学人类棋谱,AlphaZero出生就俩装备:

  1. 游戏规则说明书(比如围棋的落子规则、胜负判定);
  2. 空白神经网络(像刚拆封的笔记本,一个字都没写)。
    (内心OS:人类那套?不存在的,劳资自己悟!)

🧠 自学三板斧:自己玩、自己复盘、自己进化

疯狂自虐:每天490万盘「左右手互搏」

它把自己拆成两个AI对打,每一步都随机选走法,但慢慢「记仇」:

  • 赢的走法:「这步妙!下次优先选」(策略网络加分);
  • 输的走法:「这步蠢!概率砍到1%」(策略网络扣分)。
    (就像你打《塞尔达》,不看攻略,自己试错:「炸弹炸石头能开路?记下!跳崖摔死?再也不跳!」)
神经网络:既是「棋手」又是「裁判」

它只用一个网络干两件事:

  • 落子预测:看当前棋盘,算出每个位置的落子概率(比如围棋中「天元位35%,星位28%」);
  • 胜负预言:盯着局面直接报胜率(「现在这棋,我有67%赢面」)。
    (老版AlphaGo是俩网络,Zero合并成一个,AlphaZero更极致:连游戏专属优化都不要,纯靠通用算法!)
蒙特卡罗树搜索:脑子里开「平行宇宙」

每下一步前,它在脑子里模拟10万种未来:

  1. 随机选路:从当前局面出发,用神经网络选几个「可疑落子点」;
  2. 暴力推演:每个点都模拟到游戏结束,比如国际象棋中「车吃兵→对方马跳卧槽→我出后将军…」;
  3. 反向学习:赢的路径给神经网络「涨经验」,输的路径「拉黑」。
    (相当于你玩《三国志》,每步存档,试错100次后选最稳的打法,只不过它1秒能试完)

🔥 离谱战绩:跨界吊打所有「专业AI」

  • 围棋:4小时自学,胜率碾压AlphaGo Zero(后者用了40天);
  • 国际象棋:24小时后,100:0血洗世界冠军级AI Stockfish;
  • 将棋:3小时击败日本将棋AI冠军Elmo。
    (人类千年琢磨的套路,它用「试错+暴力计算」三天吃透,还能发明人类看不懂的战术)

🌰 举个栗子:它下国际象棋的「邪门招」

传统AI认为「 early 出车」是铁律,但AlphaZero发现:「先挺兵+跳马,后期出车能打对手措手不及!」——这种反直觉走法,被人类棋手惊呼「违背教科书」,但胜率就是高。

🤯 核心狠劲:把「试错」变成科学

它的训练循环像「打擂台」:

  1. 初代AI:随机乱下,生成10万盘数据;
  2. 进化AI:用这些数据训练神经网络,学会「哪些走法容易赢」;
  3. 终极AI:新AI虐旧AI,赢的留下当「老师」,输的淘汰。
    (3天后,它的棋力已经超过人类历史上所有棋手的总和)

人话总结:

AlphaZero就像:

  1. 一个被扔进游戏厅的小孩,只被告知「赢了有糖吃」;
  2. 疯狂试玩所有游戏,边玩边记「按这个键容易赢」;
  3. 玩每局前先脑补1000种死法,选最苟的通关路线;
  4. 三天后,拳打街机厅所有高手,还发明了没人见过的连招。

(柯洁曾说:「人类千年对围棋的探索,可能只是AI的一个初始参数。」——AlphaZero证明了这点,而且它的野心,是所有需要「规则+策略」的领域~)

划重点:AlphaZero的牛逼,不在于赢棋,而在于证明「只要给规则,AI能自学出超越人类的智慧」——这才是让所有人后背发凉的地方啊! 😱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安意诚Matrix

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值