并发编程中的资源限制问题
单核CPU中并发能让程序更快吗
并发为什么能让程序变得更快,并发是指在宏观上并行,在微观上串行
简单理解多个线程并发运行,多个工人干活肯定能更早完成任务,提高速度,但真的是这样吗?
首先讨论单核CPU,并发有没有好处。
首先一个程序并不是一直在使用CPU进行计算,相反IO也需要大量的时间。线程A在进行IO工作时,其他线程能在这段时间利用CPU工作。例如高IO低CPU和高CPU低IO类型的工作结合起来,所用时间远小于两个串行起来运行。
但是纯CPU无IO型工作时,多线程效率是低于单线程的,主要是因为有线程创建的消耗和上下文环境切换的消耗。但是这种情况下并发也并不是没有意义的,例如并发能让用户体验更好,能够一边听音乐,一边写代码,还可以打开微信聊天。
单核CPU就能够有那么大用处,在多线程,以及集群,分布式中的并发能做的事情更多了。
资源限制
那么无脑的多线程是不是可以呢,开多少线程合适呢?并不是凭空出现,需要根据我们现有的资源来确定。
(1)什么是资源限制
资源限制是指在进行并发编程时,程序的执行速度受限于计算机硬件资源或软件资源。 例如,服务器的带宽只有2Mb/s,某个资源的下载速度是1Mb/s每秒,系统启动10个线程下载资源,下载速度不会变成10Mb/s,所以在进行并发编程时,要考虑这些资源的限制。
硬件资源限制有带宽的上传/下载速度、硬盘读写速度和CPU的处理速度。
软件资源限制有数据库的连接数和socket连接数等。
(2)资源限制引发的问题
在并发编程中,将代码执行速度加快的原则是将代码中串行执行的部分变成并发执行, 但是如果将某段串行的代码并发执行,因为受限于资源,仍然在串行执行,这时候程序不仅不会加快执行,反而会更慢,因为增加了上下文切换和资源调度的时间。例如,之前看到一段程序使用多线程在办公网并发地下载和处理数据时,导致CPU利用率达到100%,几个小时都不能运行完成任务,后来修改成单线程,一个小时就执行完成了。
(3)如何解决资源限制的问题
对于硬件资源限制,可以考虑使用集群并行执行程序。既然单机的资源有限制,那么就让程序在多机上运行。比如使用ODPS、Hadoop或者自己搭建服务器集群,不同的机器处理不 的数据。可以通过“数据ID%机器数”,计算得到一个机器编号,然后由对应编号的机器处理这笔数据。
对于软件资源限制,可以考虑使用资源池将资源复用。比如使用连接池将数据库和Socket连接复用,或者在调用对方webservice接口获取数据时,只建立一个连接。
(4)在资源限制情况下进行并发编程
如何在资源限制的情况下,让程序执行得更快呢?方法就是,根据不同的资源限制调整 程序的并发度,比如下载文件程序依赖于两个资源——带宽和硬盘读写速度。有数据库操作时,涉及数据库连接数,如果SQL语句执行非常快,而线程的数量比数据库连接数大很多,则某些线程会被阻塞,等待数据库连接。