Dataframe的四种构造方式

Dataframe的三种构造方式


DataFrame可以根据结构化的数据文件、hive表、外部数据库或者已经存在的RDD构造。

1.结构化的数据文件

val sc: SparkContext // An existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)

val df = sqlContext.read.json("examples/src/main/resources/people.json")

// Displays the content of the DataFrame to stdout
df.show()

Hive表

// sc is an existing SparkContext.
val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)

sqlContext.sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING)")
sqlContext.sql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src")

// Queries are expressed in HiveQL
sqlContext.sql("FROM src SELECT key, value").collect().foreach(println)

JDBC

sqlContext.load("jdbc", Map("url" -> "jdbc:mysql://localhost:3306/your_database?user=your_user&password=your_password", "dbtable" -> "your_table"))

RDD

val rowRDD = peopleRDD
  .map(_.split(","))
  .map(attributes => Row(attributes(0), attributes(1).trim))
 
// Apply the schema to the RDD
val peopleDF = spark.createDataFrame(rowRDD, schema)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值