首先我们证明 M^(k(p-1)(q-1)(r-1)+1) mod p=M mod p [ 1 ]
1. 如果 M 、 p 不互质,那么p 能整除 M, 明显 p也能整除 M^(k(p-1)(q-1)(r-1)+1), 那么: M^(k(p-1)(q-1)(r-1)+1) mod p=M mod p=0
2. 若 p 、 q 互质, 根据欧拉定理 M^Φ (p) mod p=1 ,有
M^(k(p-1)(q-1)(r-1)+1) mod p
=((M)M^k(p-1)(q-1)(r-1)) mod p
=((M)(M^(p-1))^k(q-1)(r-1)) mod p
=((M)(M^Φ(p))^k(q-1)(r-1)) mod p
=(M mod p)*[(M ^Φ(p)) mod p]^k(q-1)(r-1)
=(M mod p)*(1)^k(q-1)(r-1) (根据欧拉定理)
=M mod p
根据[ 1 ] , 有 [M^(k(p-1)(q-1)(r-1)+1)-M] mod p=0 (2),
同理,可证明 [M^(k(p-1)(q-1)(r-1)+1)-M] mod q=0(3)
[M^(k(p-1)(q-1)(r-1)+1)-M] mod r=0 (4)
根据[ 2 ][ 3 ][ 4 ]知,存在一整数 x 使
[M^(k(p-1)(q-1)(r-1)+1)-M]=(pqr)x=nx
所以 n 能整除 [M^(k(p-1)(q-1)(r-1)+1)-M]
故 M^(k(p-1)(q-1)(r-1)+1) mod n=M^(k准(n)+1) mod n=M
根据 ed=k准(n)+1 (逆元关系)
得 M=^ed mod n=M