I Hate It
Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 128203 Accepted Submission(s): 47109
Problem Description
很多学校流行一种比较的习惯。老师们很喜欢询问,从某某到某某当中,分数最高的是多少。
这让很多学生很反感。
不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问。当然,老师有时候需要更新某位同学的成绩。
Input
本题目包含多组测试,请处理到文件结束。
在每个测试的第一行,有两个正整数 N 和 M ( 0<N<=200000,0<M<5000 ),分别代表学生的数目和操作的数目。
学生ID编号分别从1编到N。
第二行包含N个整数,代表这N个学生的初始成绩,其中第i个数代表ID为i的学生的成绩。
接下来有M行。每一行有一个字符 C (只取'Q'或'U') ,和两个正整数A,B。
当C为'Q'的时候,表示这是一条询问操作,它询问ID从A到B(包括A,B)的学生当中,成绩最高的是多少。
当C为'U'的时候,表示这是一条更新操作,要求把ID为A的学生的成绩更改为B。
Output
对于每一次询问操作,在一行里面输出最高成绩。
Sample Input
5 6
1 2 3 4 5
Q 1 5
U 3 6
Q 3 4
Q 4 5
U 2 9
Q 1 5
Sample Output
5
6
5
9
思路:
线段树模板题,在建树和查询中加入求最大值就可以了。
代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN = 200100;
typedef long long LL;
struct node
{
LL left;
LL right;
LL ma;
};
node Tree[MAXN<<2];
LL cc[MAXN];
void build(LL root, LL left, LL right)
{
Tree[root].left = left;
Tree[root].right= right;
if(Tree[root].left && Tree[root].left == Tree[root].right)
{
Tree[root].ma= cc[left];
return;
}
build(root<<1,left,(left+right)/2);
build(root<<1|1, (left+right)/2+1,right);
Tree[root].ma = max(Tree[root<<1].ma, Tree[root<<1|1].ma);
//Tree[root].ma=Tree[root<<1].ma+Tree[root<<1|1].ma;
}
void update(LL root,LL index,LL value)//根节点,查找的第几个值,改的值
{
if(Tree[root].left == index && Tree[root].right == index )//找到这个值后赋值
{
Tree[root].ma=value;
return;
}
if(index <= (Tree[root].left +Tree[root].right)/2)//值在左边
update(root*2, index,value);
else
update(root*2+1,index,value);
//Tree[root].ma=Tree[root<<1].ma+Tree[root<<1|1].ma;
Tree[root].ma = max(Tree[root<<1].ma , Tree[root<<1|1].ma);
}
int query(LL root, LL left,LL right)
{
if(left>Tree[root].right || Tree[root].left >right )
return 0;
if(left<= Tree[root].left && Tree[root].right <=right)
return Tree[root].ma;
//return query(root<<1,left,right)+query(root<<1|1,left,right);
return max(query(root<<1,left,right),query(root<<1|1,left,right));
}
void init()
{
for(int i=0; i<MAXN<<2 ; i++)
{
Tree[i].ma = -INT_MAX;
}
}
int main()
{
int N,M;
char Q;
int A,B;
while(cin>>N>>M)
{
init();
for(int i=1; i<=N; i++)
{
scanf("%lld",&cc[i]);
//cin>>cc[i];
}
build(1,1,N);
while(M--)
{
cin>>Q>>A>>B;
if(Q=='Q')
{
cout<<query(1,A,B)<<endl;
}
else if(Q=='U')
{
update(1,A,B);
}
}
}
return 0;
}