蓝桥杯-PREV30-波动数列
- 问题描述
观察这个数列:
1 3 0 2 -1 1 -2 …
这个数列中后一项总是比前一项增加2或者减少3。
栋栋对这种数列很好奇,他想知道长度为 n 和为 s 而且后一项总是比前一项增加a或者减少b的整数数列可能有多少种呢? - 输入格式
输入的第一行包含四个整数 n s a b,含义如前面说述。 - 输出格式
输出一行,包含一个整数,表示满足条件的方案数。由于这个数很大,请输出方案数除以100000007的余数。 - 样例输入
4 10 2 3 - 样例输出
2 - 样例说明
这两个数列分别是2 4 1 3和7 4 1 -2。 - 数据规模和约定
对于10%的数据,1<=n<=5,0<=s<=5,1<=a,b<=5;
对于30%的数据,1<=n<=30,0<=s<=30,1<=a,b<=30;
对于50%的数据,1<=n<=50,0<=s<=50,1<=a,b<=50;
对于70%的数据,1<=n<=100,0<=s<=500,1<=a, b<=50;
对于100%的数据,1<=n<=1000,-1,000,000,000<=s<=1,000,000,000,1<=a, b<=1,000,000。 - DP小课堂动态规划(DP)
- 具体思路详见【蓝桥杯】历届试题 波动数列(动态规划)这里面讲的超详细哦,膜拜了!
- 实现代码
#include<iostream>
#include<cmath>
#define MOD 100000007
using namespace std;
long long n,s,a,b;
int dp[1005*1005]={0};
int ans=0;
int main(){
cin>>n>>s>>a>>b;
dp[0]=1;
for(int i=1;i<n;i++){
for(int j=i*(i+1)/2;j>=i;j--)
dp[j]=(dp[j]+dp[j-i])%MOD;
}
for(int i=0;i<=n*(n-1)/2;i++){
if((s-i*a+(n*(n-1)/2-i)*b)%n==0)
ans=(ans+dp[i])%MOD;
}
cout<<ans<<endl;
return 0;
}