蓝桥杯-PREV30-波动数列-DP

蓝桥杯-PREV30-波动数列

  • 问题描述
      观察这个数列:
      1 3 0 2 -1 1 -2 …
      这个数列中后一项总是比前一项增加2或者减少3。
      栋栋对这种数列很好奇,他想知道长度为 n 和为 s 而且后一项总是比前一项增加a或者减少b的整数数列可能有多少种呢?
  • 输入格式
      输入的第一行包含四个整数 n s a b,含义如前面说述。
  • 输出格式
      输出一行,包含一个整数,表示满足条件的方案数。由于这个数很大,请输出方案数除以100000007的余数。
  • 样例输入
    4 10 2 3
  • 样例输出
    2
  • 样例说明
      这两个数列分别是2 4 1 3和7 4 1 -2。
  • 数据规模和约定
      对于10%的数据,1<=n<=5,0<=s<=5,1<=a,b<=5;
      对于30%的数据,1<=n<=30,0<=s<=30,1<=a,b<=30;
      对于50%的数据,1<=n<=50,0<=s<=50,1<=a,b<=50;
      对于70%的数据,1<=n<=100,0<=s<=500,1<=a, b<=50;
      对于100%的数据,1<=n<=1000,-1,000,000,000<=s<=1,000,000,000,1<=a, b<=1,000,000。
  • DP小课堂动态规划(DP)
  • 具体思路详见【蓝桥杯】历届试题 波动数列(动态规划)这里面讲的超详细哦,膜拜了!
  • 实现代码
#include<iostream>
#include<cmath>
#define MOD 100000007
using namespace std;
long long n,s,a,b;
int dp[1005*1005]={0};
int ans=0;
int main(){
	cin>>n>>s>>a>>b;
	dp[0]=1;
	for(int i=1;i<n;i++){
		for(int j=i*(i+1)/2;j>=i;j--)
		    dp[j]=(dp[j]+dp[j-i])%MOD;
	}
	for(int i=0;i<=n*(n-1)/2;i++){
		if((s-i*a+(n*(n-1)/2-i)*b)%n==0)
		    ans=(ans+dp[i])%MOD;
	}
	cout<<ans<<endl;
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值