动态规划 种树

该博客介绍了UPC2019秋季个人训练赛中的一道题,关于如何在环形花园中种树以最大化观赏价值。题目要求在给定的树种和位置限制下,使用动态规划找到最优的种树方案,使得相邻树木的高度差异满足条件,同时最大化总观赏价值。博客提供了输入输出示例和AC代码,详细解释了状态转移方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UPC2019秋个人训练赛1-B种树

题目描述

事实上,小X邀请两位奆老来的目的远不止是玩斗地主,主要是为了抓来苦力,替他的后花园种树……
小X的后花园是环形的,他想在花园周围均匀地种上n棵树,但是奆老花园的土壤当然非同寻常,每个位置适合种的树都不一样,一些树可能会因为不适合这个位置的土壤而损失观赏价值。
小X最喜欢3种树,这3种树的高度分别为10,20,30。小X希望这一圈树种得有层次感,所以任何一个位置的树要比它相邻的两棵树的高度都高或者都低,并且在此条件下,小X想要你设计出一套方案,使得观赏价值之和最高。

输入

第一行为一个正整数n,表示需要种的树的棵树。
接下来n行,每行3个不超过10000的正整数ai,bi,ci,按顺时针顺序表示了第i个位置种高度为10,20,30的树能获得的观赏价值。
注意:第i个位置的树与第i+1个位置的树相邻,特别地,第1个位置的树与第n个位置的树相邻。

输出

一行一个正整数,为最大的观赏价值和。

 

样例输入

样例数据

4
1 3 2
3 1 2
3 1 2
3 1 2

样例输出

11

提示

第1至n个位置分别种上高度为20,10,30,10的树,价值最高。

对于20%的数据,有n≤10
对于40%的数据,有n≤100
对于60%的数据,有n≤1000
对于100%的数据,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值