题目描述:
给你一个整数数组 arr 和两个整数 k 和 threshold 。
请你返回长度为 k 且平均值大于等于 threshold 的子数组数目。
示例 1:
输入:arr = [2,2,2,2,5,5,5,8], k = 3, threshold = 4
输出:3
解释:子数组 [2,5,5],[5,5,5] 和 [5,5,8] 的平均值分别为 4,5 和 6 。其他长度为 3 的子数组的平均值都小于 4 (threshold 的值)。
示例 2:
输入:arr = [1,1,1,1,1], k = 1, threshold = 0
输出:5
示例 3:
输入:arr = [11,13,17,23,29,31,7,5,2,3], k = 3, threshold = 5
输出:6
解释:前 6 个长度为 3 的子数组平均值都大于 5 。注意平均值不是整数。
示例 4:
输入:arr = [7,7,7,7,7,7,7], k = 7, threshold = 7
输出:1
示例 5:
输入:arr = [4,4,4,4], k = 4, threshold = 1
输出:1
提示:
1 <= arr.length <= 10^5
1 <= arr[i] <= 10^4
1 <= k <= arr.length
0 <= threshold <= 10^4
方法 1:
主要思路:解题汇总链接
(1)先计算出范围大小为 k-1内的数据和,然后每次添加当前范围的一个右边的值,判断是否满足阈值条件,满足则统计量加一,然后再去掉一个当前范围内左边的一个值,一直保持当前范围的大小为 k;
class Solution {
public:
int numOfSubarrays(vector<int>& arr, int k, int threshold) {
int res=0;
int left=0,right=0;//要判断的范围的左右边界
int loc_sum=0;//范围内的和
threshold*=k;//阈值
while(right<k-1){//范围的初始化
loc_sum+=arr[right++];
}
while(right<arr.size()){
loc_sum+=arr[right++];//范围扩展到 k大小
if(loc_sum>=threshold){
++res;//满足阈值
}
loc_sum-=arr[left++];//去掉左边边界
}
return res;
}
};