1573 分割字符串的方案数

题目描述:
给你一个二进制串 s (一个只包含 0 和 1 的字符串),我们可以将 s 分割成 3 个 非空 字符串 s1, s2, s3 (s1 + s2 + s3 = s)。
请你返回分割 s 的方案数,满足 s1,s2 和 s3 中字符 ‘1’ 的数目相同。
由于答案可能很大,请将它对 10^9 + 7 取余后返回。

示例 1:
输入:s = “10101”
输出:4
解释:总共有 4 种方法将 s 分割成含有 ‘1’ 数目相同的三个子字符串。
“1|010|1”
“1|01|01”
“10|10|1”
“10|1|01”

示例 2:
输入:s = “1001”
输出:0

示例 3:
输入:s = “0000”
输出:3
解释:总共有 3 种分割 s 的方法。
“0|0|00”
“0|00|0”
“00|0|0”

示例 4:
输入:s = “100100010100110”
输出:12

提示:
s[i] == ‘0’ 或者 s[i] == ‘1’
3 <= s.length <= 10^5

方法1:
主要思路:解题链接汇总
(1)先统计中的1的个数,判断该数字是否能被3整除,若不能,则直接返回0,再判断该数字是否是0,若是,则直接返回组合数;
(2)将1的总个数除以3,既分成三段时,每段中1的个数;
(3)分别找出第一段和第二段之间可以插入的位置数量,和第二段和第三段之间可以插入的位置的数量,两个数量相乘即为总的分割数量;

class Solution {
public:
    long long find_split(string& s,int& left,int& right,const int& counts_one){//可以插入的分割位置的数量
        int counts_cur=0;
        while(true){//该循环跳过1的指定个数
            if(s[left]=='1'){
                ++counts_cur;
                if(counts_one==counts_cur){
                    break;
                }
            }
            ++left;
        }
        right=left+1;//判断出可以插入位置的终止位置
        while(s[right]=='0'){
            ++right;
        }
        return right-left;//返回可以插入的位置,既分割的位置
    }
    int numWays(string s) {
        int counts_one=0;
        for(char&ch:s){//总的1的个数
            if(ch=='1'){
                ++counts_one;
            }
        }
        if(counts_one%3!=0){//不能分割
            return 0;
        }

        if(counts_one==0){//没有1
            return 1ll*(s.size()-1)*(s.size()-2)/2%1000000007;
        }
        counts_one/=3;//每段中1应该有的个数
		//第一段和第二段之间可以分割的位置数量
        int left=0,right=0;
        long long l=find_split(s,left,right,counts_one);
		//第二段和第三段之间可以分割的位置的数量
        left=right;
        long long r=find_split(s,left,right,counts_one);
        
        return r*l%1000000007;;//返回
    }   
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值