题目描述:
给你一个二进制串 s (一个只包含 0 和 1 的字符串),我们可以将 s 分割成 3 个 非空 字符串 s1, s2, s3 (s1 + s2 + s3 = s)。
请你返回分割 s 的方案数,满足 s1,s2 和 s3 中字符 ‘1’ 的数目相同。
由于答案可能很大,请将它对 10^9 + 7 取余后返回。
示例 1:
输入:s = “10101”
输出:4
解释:总共有 4 种方法将 s 分割成含有 ‘1’ 数目相同的三个子字符串。
“1|010|1”
“1|01|01”
“10|10|1”
“10|1|01”
示例 2:
输入:s = “1001”
输出:0
示例 3:
输入:s = “0000”
输出:3
解释:总共有 3 种分割 s 的方法。
“0|0|00”
“0|00|0”
“00|0|0”
示例 4:
输入:s = “100100010100110”
输出:12
提示:
s[i] == ‘0’ 或者 s[i] == ‘1’
3 <= s.length <= 10^5
方法1:
主要思路:解题链接汇总
(1)先统计中的1的个数,判断该数字是否能被3整除,若不能,则直接返回0,再判断该数字是否是0,若是,则直接返回组合数;
(2)将1的总个数除以3,既分成三段时,每段中1的个数;
(3)分别找出第一段和第二段之间可以插入的位置数量,和第二段和第三段之间可以插入的位置的数量,两个数量相乘即为总的分割数量;
class Solution {
public:
long long find_split(string& s,int& left,int& right,const int& counts_one){//可以插入的分割位置的数量
int counts_cur=0;
while(true){//该循环跳过1的指定个数
if(s[left]=='1'){
++counts_cur;
if(counts_one==counts_cur){
break;
}
}
++left;
}
right=left+1;//判断出可以插入位置的终止位置
while(s[right]=='0'){
++right;
}
return right-left;//返回可以插入的位置,既分割的位置
}
int numWays(string s) {
int counts_one=0;
for(char&ch:s){//总的1的个数
if(ch=='1'){
++counts_one;
}
}
if(counts_one%3!=0){//不能分割
return 0;
}
if(counts_one==0){//没有1
return 1ll*(s.size()-1)*(s.size()-2)/2%1000000007;
}
counts_one/=3;//每段中1应该有的个数
//第一段和第二段之间可以分割的位置数量
int left=0,right=0;
long long l=find_split(s,left,right,counts_one);
//第二段和第三段之间可以分割的位置的数量
left=right;
long long r=find_split(s,left,right,counts_one);
return r*l%1000000007;;//返回
}
};