Anaconda安装Tensorflow的GPU版

最近因为各种原因之前的tensorflow发现不能用用了,所以在网上找了这篇优质的安装指南,分享一下。

1.安装Anaconda

官网下载
地址:https://www.anaconda.com/products/individual

2. 卸载电脑上已有的python

先看下自己电脑上安装的python版本(为了以防后面的一些奇怪的版本不兼容问题)

直接在官网找到相应版本的安装包(记住是安装包,不是直接解压就用的那种),然后运行uninstall.

3. 开搞conda

一路next,到这一步后直接选择添加到path中,这样就不用自己去添加了
anaconda安装

打开cmd看一下python版本:

python -V (这里如果单输入python的话是进入python环境,可以看到这个python是在conda环境下的)

4. 安装Tensorflow-gpu

安装GPU版本必须把对应的版本全部校对好!!!(python版本,cuda版本,cudnn版本以及tensorflow版本)

打开conda的prompt

第一步:查看版本。

conda -V

这里要更改一下国内的镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

然后在新建一个虚拟环境:

conda create -n TC2 python=3.7

进入该环境:

conda activate TC2

有这个显示就说明我们进入了这个TC2的环境,之后我们就在这个环境下安装tensorflow-gpu

conda install tensorflow-gpu //这里也可以指定版本,比如conda install tensorflow-gpu==2.1.0

输入y确认。我们不需要再额外安装cuda和cudnn,因为他已经包含在安装的列表里了。

我这里安装的是2.1.0的版本,静静等待安装完成,如果安装出现问题,比如进度卡住了之类的多半是网络不稳定,可以选择切换到国内镜像。

等待完成。然后我们可以看一下有没有安装完成:

conda list //查看当前环境下安装的包

第二步:验证

我们新建一个python3的脚本,输入:

import tensorflow as tf
tf.version

import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices(‘GPU’)))

本文按照以下作者内容进行删改
本文作者:陆黎的Blog
本文链接:https://www.cnblogs.com/jshmztl/p/13306837.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值